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walk	in	an	almost	invisible	sea	of	data.	I	walked	into	a	school	fair	and	noticed	a	jump	rope	contest.	The	number	of	jumps	for	each	jumper	until	they	fouled	out	was	being	recorded	on	the	wall.	Numbers.	With	a	mode,	median,	mean,	and	standard	deviation.	Then	I	noticed	that	faster	jumpers	attained	higher	jump	counts	than	slower	jumpers.	I	saw	that	I
could	begin	to	predict	jump	counts	based	on	the	starting	rhythm	of	the	jumper.	I	used	my	stopwatch	to	record	the	time	and	total	jump	count.	I	later	find	that	a	linear	correlation	does	exist,	and	I	am	able	to	show	by	a	t-test	that	the	faster	jumpers	have	statistically	significantly	higher	jump	counts.	I	later	incorporated	this	data	into	the	fall	2007	final.	I
walked	into	a	store	back	in	2003	and	noticed	that	Yamasa™	soy	sauce	appeared	to	cost	more	than	Kikkoman™	soy	sauce.	I	recorded	Yamasa	and	Kikkoman	soy	sauce	prices	and	volumes,	working	out	the	cost	per	milliliter.	I	eventually	showed	that	the	mean	price	per	milliliter	for	Yamasa	was	significantly	higher	than	Kikkoman.	I	also	ran	a	survey	of
students	and	determined	that	the	college	students	prefer	Kikkoman	to	Yamasa.	As	a	child	my	son	liked	articulated	mining	dump	trucks.	I	found	pictures	of	Terex™	dump	trucks	on	the	Internet.	I	wrote	to	Terex	in	Scotland	and	asked	them	about	how	the	prices	vary	for	the	dump	trucks,	explaining	that	I	teach	statistics	and	thought	that	I	might	be	able
to	use	the	data	in	class.	"Funny	you	should	ask,"	a	Terex	sales	representative	replied	in	writing.	"The	dump	trucks	are	basically	priced	by	a	linear	relationship	between	horsepower	and	price."	The	representative	included	a	complete	list	of	horsepower	and	price	Terex	articulated	dump	trucks.	One	term	I	learned	that	a	new	Cascading	Style	Sheets	level
3	color	specification	for	hue,	luminosity,	and	luminance	had	been	released	for	HyperText	Markup	Language	web	pages.	The	hues	were	based	on	a	color	wheel	with	cyan	at	the	180°	middle	of	the	wheel.	I	knew	that	Newton	had	put	green	in	the	middle	of	the	red-orange-yellow-green-blue-indigo-violet	rainbow,	but	green	is	at	120°	on	a	hue	color	wheel.
Green	is	not	the	middle	of	the	hue	color	wheel.	And	there	is	no	cyan	in	Newton's	rainbow.	Could	the	middle	of	the	rainbow	actually	be	at	180°	cyan,	or	was	Newton	correct	to	say	the	middle	of	the	rainbow	is	at	120°	green?	I	used	a	hue	analysis	tool	to	analyze	the	image	of	an	actual	rainbow	taken	by	a	digital	camera	here	on	Pohnpei.	This	allowed	an
analysis	of	the	hue	angle	at	the	center	of	the	rainbow.	While	researching	sakau	consumption	in	markets	here	on	Pohnpei	I	found	differences	in	means	between	markets,	and	I	found	a	variation	with	distance	from	Kolonia.	This	implied	a	relationship	between	the	strength	of	sakau	and	the	distance	from	the	centrally	located	town	of	Kolonia.	I	asked	some
of	the	markets	to	share	their	cup	tally	sheets	with	me,	and	a	number	of	the	markets	obliged.	The	sakau	data	suggested	that	sakau	strength	was	related	to	the	distance	from	Kolonia.	The	point	is	that	we	are	surrounded	by	data.	You	might	not	go	into	statistics	professionally,	yet	you	will	always	live	in	a	world	filled	with	data.	During	this	course	my	hope
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for	numbers	to	happen	around	you.	See	the	matrix.	Curriculum	note	The	text	and	the	curriculum	are	an	evolving	work.	Some	curriculum	options	are	not	specifically	laid	out	in	this	text.	One	option	is	to	reserve	time	at	the	end	of	the	course	to	engage	in	open	data	exploration.	Time	can	be	gained	to	do	this	by	de-emphasizing	chapter	five	probability,
essentially	omitting	chapter	six,	and	skipping	from	the	end	of	section	7.2	directly	to	chapter	8.	This	material	has	been	retained	as	these	choices	should	be	up	to	the	individual	instructor.	For	the	first	time	since	the	inception	of	the	online	text,	the	sections	were	renumbered	from	edition	6.0	to	6.1.	Content	was	not	changed,	but	pre-existing	links	into	the
text	will	be	broken	in	places.	The	section	numbers	were	reworked	in	some	places	in	part	of	a	move	towards	support	remote	learners.	Statistics	studies	groups	of	people,	objects,	or	data	measurements	and	produces	summarizing	mathematical	information	on	the	groups.	The	groups	are	usually	not	all	of	the	possible	people,	objects,	or	data
measurements.	The	groups	are	called	samples.	The	larger	collection	of	people,	objects	or	data	measurements	is	called	the	population.	Statistics	attempts	to	predict	measurements	for	a	population	from	measurements	made	on	the	smaller	sample.	For	example,	to	determine	the	average	weight	of	a	student	at	the	college,	a	study	might	select	a	random
sample	of	fifty	students	to	weigh.	Then	the	measured	average	weight	could	be	used	to	estimate	the	average	weight	for	all	student	at	the	college.	The	fifty	students	would	be	the	sample,	all	students	at	the	college	would	be	the	population.	Population:	The	complete	group	of	elements,	objects,	observations,	or	people.	Parameters:	Measurements	of	the
population:	population	size	N,	population	median,	population	mean	μ...	Sample:	A	part	of	the	population.	A	sample	is	usually	more	than	five	measurements,	observations,	objects,	or	people,	and	smaller	than	the	complete	population.	Statistics:	Measurements	of	a	sample:	sample	size	n,	sample	median,	sample	mean	x.	Examples	We	could	use	the	ratio
of	females	to	males	in	a	class	to	estimate	the	ratio	of	females	to	males	on	campus.	The	sample	is	the	class.	The	intended	population	is	all	students	on	campus.	Whether	the	statistics	class	is	a	"good"	sample	-	representative,	unbiased,	randomly	selected,	would	be	a	concern.	We	could	use	the	average	body	fat	index	for	a	randomly	selected	group	of
females	between	the	ages	of	18	and	22	on	campus	to	determine	the	average	body	fat	index	for	females	in	the	FSM	between	the	ages	of	18	and	22.	The	sample	is	those	females	on	campus	that	we've	measured.	The	intended	population	is	all	females	between	the	ages	of	18	and	22	in	the	FSM.	Again,	there	would	be	concerns	about	how	the	sample	was
selected.	Measurements	are	made	of	individual	elements	in	a	sample	or	population.	The	elements	could	be	objects,	animals,	or	people.	Sample	size	n	The	sample	size	is	the	number	of	elements	or	measurements	in	a	sample.	The	lower	case	letter	n	is	used	for	sample	size.	If	the	population	size	is	being	reported,	then	an	upper	case	N	is	used.	The
spreadsheet	function	for	calculating	the	sample	size	is	the	COUNT	function.	=COUNT(data)	If	one	wants	to	count	the	sample	size	for	a	nominal	level	list	of	words,	the	COUNTA	function	is	used.	=COUNTA(data)	1.2	Types	and	Levels	of	measurement	Types	of	measurement	Data	can	be	put	into	categories	such	as	words	or	numbers,	countable	and
uncountable,	and	into	levels	of	measurement.	Words	or	numbers	Qualitative	data	refers	to	descriptive	measurements,	typically	non-numerical.	Usually	discrete.	Quantitative	data	refers	to	numerical	measurements.	Quantitative	data	can	be	discrete	or	continuous.	Countable	or	uncountable	Discrete:	A	countable	or	limited	number	of	possible
descriptive	or	numeric	values.	Continuous:	An	infinite	number	of	possible	numeric	values.	Always	quantitative.	Levels	of	measurement	There	are	four	levels	of	measurement.	In	this	text	most	of	the	data	and	examples	are	at	the	ratio	level	of	measurement.	Nominal	Qualitative,	discrete	data	values:	Data	that	is	words	only.	Baby	names,	favorite	colors,
sports	you	play	Ordinal	Qualitative/quantitative	borderline,	discrete	data	values:	Data	that	can	be	put	in	a	rank	order.	Letter	grades	A,	B,	C,	D,	F.	Sakau	market	rating	system	where	the	number	of	cups	until	one	is	"pwopihda"...	Interval	Quantitative	discrete	or	continuous	data	values:	Data	where	differences	in	numeric	values	have	meaning	but	ratios
do	not	have	meaning.	Some	measurement	scales	in	fields	such	as	psychology,	temperature	in	Celsius.	There	is	either	a	lack	of	a	zero	or	the	zero	is	not	a	true	zero.	The	number	of	occupants	of	a	car	on	Pohnpei:	neither	zero	nor	fractional	values	occur.	Ratio	Quantitative	continuous	data	values:	Data	where	differences,	ratios,	and	fractions	have
meaning.	Zero	exists	and	has	meaning.	Distance,	height,	speed,	velocity,	time	in	seconds,	altitude,	acceleration,	mass.	Nesting	of	the	levels	The	levels	of	measurement	can	also	be	thought	of	as	being	nested.	For	example,	ratio	level	data	consists	of	numbers.	Numbers	can	be	put	in	order,	hence	ratio	level	data	is	also	orderable	data	and	is	thus	also
ordinal	level	data.	To	some	extent,	each	level	includes	the	ones	below	that	level.	The	highest	level	of	measurement	that	a	data	could	be	considered	to	be	is	said	to	be	the	level	of	measurement.	There	are	instances	where	qualitative	data	might	be	placed	in	an	order	and	thus	be	considered	ordinal	data,	thus	ordinal	level	data	may	be	either	qualitative	or
quantitative.	When	a	survey	says,	"Strongly	agree,	agree,	disagree,	strongly	disagree"	the	data	technically	consists	of	answers	which	are	words.	Yet	these	words	have	an	order,	in	some	instances	the	answers	are	mapped	to	numbers	and	a	median	value	is	then	calculated.	Above	the	ordinal	level	the	data	is	quantitative,	numeric	data.	Nominal
Qualitative	Words	Names	Categories	Sample	size	n	Mode	Ordinal	Orderable	Rankable	Qual/Quan	Mode	Interval	Quantitative	No	fractional	values	No	true	zero	Median	Range	Ratio	Quantitative	Numbers	Zero	exists	Fractional	values	Mean	Standard	deviation	Note	that	at	higher	levels,	such	as	at	the	ratio	level,	the	mean	is	usually	chosen	to	represent
the	middle,	but	the	median	and	mode	can	also	be	calculated.	Statistics	that	can	be	calculated	at	lower	levels	of	measurement	can	be	used	in	higher	levels	of	measurement.	Descriptive	statistics:	Numerical	or	graphical	representations	of	samples	or	populations.	Can	include	numerical	measures	such	as	mode,	median,	mean,	standard	deviation.	Also
includes	images	such	as	graphs,	charts,	visual	linear	regressions.	Inferential	statistics:	Using	descriptive	statistics	of	a	sample	to	predict	the	parameters	or	distribution	of	values	for	a	population.	1.3	Simple	random	samples	The	number	of	measurements,	elements,	objects,	or	people	in	a	sample	is	the	sample	size	n.	A	simple	random	sample	of	n
measurements	from	a	population	is	one	selected	in	a	way	that:	any	member	of	the	population	is	equally	likely	to	be	selected.	any	sample	of	a	given	size	is	equally	likely	to	be	selected.	Ensuring	that	a	sample	is	random	is	difficult.	Suppose	I	want	to	study	how	many	Pohnpeians	own	cars.	Would	people	I	meet/poll	on	main	street	Kolonia	be	a	random
sample?	Why?	Why	not?	Studies	often	use	random	numbers	to	help	randomly	selects	objects	or	subjects	for	a	statistical	study.	Obtaining	random	numbers	can	be	more	difficult	than	one	might	at	first	presume.	Computers	can	generate	pseudo-random	numbers.	"Pseudo"	means	seemingly	random	but	not	truly	random.	Computer	generated	random
numbers	are	very	close	to	random	but	are	actually	not	necessarily	random.	Next	we	will	learn	to	generate	pseudo-random	numbers	using	a	computer.	This	section	will	also	serve	as	an	introduction	to	functions	in	spreadsheets.	Coins	and	dice	can	be	used	to	generate	random	numbers.	Using	a	spreadsheet	to	generate	random	numbers	This	course
presumes	prior	contact	with	a	course	such	as	CA	100	Computer	Literacy	where	a	basic	introduction	to	spreadsheets	is	made.	The	random	function	RAND	generates	numbers	between	0	and	0.9999...	=rand()	The	random	number	function	consists	of	a	function	name,	RAND,	followed	by	parentheses.	For	the	random	function	nothing	goes	between	the
parentheses,	not	even	a	space.	To	get	other	numbers	the	random	function	can	be	multiplied	by	coefficient.	To	get	whole	numbers	the	integer	function	INT	can	be	used	to	discard	the	decimal	portion.	=INT(argument)	The	integer	function	takes	an	"argument."	The	argument	is	a	computer	term	for	an	input	to	the	function.	Inputs	could	include	a
number,	a	function,	a	cell	address	or	a	range	of	cell	addresses.	The	following	function	when	typed	into	a	spreadsheet	that	mimic	the	flipping	of	a	coin.	A	1	will	be	a	head,	a	0	will	be	a	tail.	=INT(RAND()*2)	The	spreadsheet	can	be	made	to	display	the	word	"head"	or	"tail"	using	the	following	code:	=CHOOSE(INT(RAND()*2),"head","tail")	A	single	die
can	also	be	simulated	using	the	following	function	=INT(6*RAND()+1)	To	randomly	select	among	a	set	of	student	names,	the	following	model	can	be	built	upon.	=CHOOSE(INT(RAND()*5+1),"Jan","Jen","Jin","Jon","Jun")	To	generate	another	random	choice,	press	the	F9	key	on	the	keyboard.	F9	forces	a	spreadsheet	to	recalculate	all	formulas.	Methods
of	sampling	When	practical,	feasible,	and	worth	both	the	cost	and	effort,	measurements	are	done	on	the	whole	population.	In	many	instances	the	population	cannot	be	measured.	Sampling	refers	to	the	ways	in	which	random	subgroups	of	a	population	can	be	selected.	Some	of	the	ways	are	listed	below.	Census:	Measurements	done	on	the	whole
population.	Sample:	Measurements	of	a	representative	random	sample	of	the	population.	Simulation	Today	this	often	refers	to	constructing	a	model	of	a	system	using	mathematical	equations	and	then	using	computers	to	run	the	model,	gathering	statistics	as	the	model	runs.	Stratified	sampling	To	ensure	a	balanced	sample:	Suppose	I	want	to	do	a
study	of	the	average	body	fat	of	young	people	in	the	FSM	using	students	in	the	statistics	course.	The	FSM	population	is	roughly	half	Chuukese,	but	in	the	statistics	course	only	12%	of	the	students	list	Chuuk	as	their	home	state.	Pohnpei	is	35%	of	the	national	population,	but	the	statistics	course	is	more	than	half	Pohnpeian	at	65%.	If	I	choose	as	my
sample	students	in	the	statistics	course,	then	I	am	likely	to	wind	up	with	Pohnpeians	being	over	represented	relative	to	the	actual	national	proportion	of	Pohnpeians.	State	2010	Population	Fractional	share	of	national	population	(relative	frequency)	Statistics	students	by	state	of	origin	spring	2011	Fractional	share	of	statistics	seats
Chuuk486510.47100.12	Kosrae66160.0670.09	Pohnpei359810.35530.65	Yap113760.11120.15	1026241.00821.00	The	solution	is	to	use	stratified	sampling.	I	ensure	that	my	sample	subgroups	reflect	the	national	proportions.	Given	that	the	sample	size	is	small,	I	could	choose	to	survey	all	ten	Chuukese	students,	seven	Pohnpeian	students,	two	Yapese
students,	and	one	Kosraean	student.	There	would	still	be	statistical	issues	of	the	small	subsample	sizes	from	each	state,	but	the	ratios	would	be	closer	to	that	seen	in	the	national	population.	Each	state	would	be	considered	a	single	strata.	Systematic	sampling	Used	where	a	population	is	in	some	sequential	order.	A	start	point	must	be	randomly	chosen.
Useful	in	a	measuring	a	timed	event.	Never	used	if	there	is	a	cyclic	or	repetitive	nature	to	a	system:	If	the	sample	rate	is	roughly	equal	to	the	cycle	rate,	then	the	results	are	not	going	to	be	randomly	distributed	measurements.	For	example,	suppose	one	is	studying	whether	the	sidewalks	on	campus	are	crowded.	If	one	measures	during	the	time
between	class	periods	when	students	are	moving	to	their	next	class	-	then	one	would	conclude	the	sidewalks	are	crowded.	If	one	measured	only	when	classes	were	in	session,	then	one	would	conclude	that	there	is	no	sidewalk	crowding	problem.	This	type	of	problem	in	measurement	occurs	whenever	a	system	behaves	in	a	regular,	cyclical	manner.	The
solution	would	be	ensure	that	the	time	interval	between	measurements	is	random.	Cluster	sampling	The	population	is	divided	into	naturally	occurring	subunits	and	then	subunits	are	randomly	selected	for	measurement.	In	this	method	it	is	important	that	subunits	(subgroups)	are	fairly	interchangeable.	Suppose	we	want	to	poll	the	people	in	Kitti's
opinion	on	whether	they	would	pay	for	water	if	water	was	guaranteed	to	be	clean	and	available	24	hours	a	day.	We	could	cluster	by	breaking	up	the	population	by	kousapw	and	then	randomly	choose	a	few	kousapw	and	poll	everyone	in	these	kousapw.	The	results	could	probably	be	generalized	to	all	Kitti.	Convenience	sampling	Results	or	data	that	are
easily	obtained	is	used.	Highly	unreliable	as	a	method	of	getting	a	random	samples.	Examples	would	include	a	survey	of	one's	friends	and	family	as	a	sample	population.	Or	the	surveys	that	some	newspapers	and	news	programs	produce	where	a	reporter	surveys	people	shopping	in	a	store.	1.4	Experimental	Design	In	science,	statistics	are	gathered	by
running	an	experiment	and	then	repeating	the	experiment.	The	sample	is	the	experiments	that	are	conducted.	The	population	is	the	theoretically	abstract	concept	of	all	possible	runs	of	the	experiment	for	all	time.	The	method	behind	experimentation	is	called	the	scientific	method.	In	the	scientific	method,	one	forms	a	hypothesis,	makes	a	prediction,
formulates	an	experiment,	and	runs	the	experiment.	Some	experiments	involve	new	treatments,	these	require	the	use	of	a	control	group	and	an	experimental	group,	with	the	groups	being	chosen	randomly	and	the	experiment	run	double	blind.	Double	blind	means	that	neither	the	experimenter	nor	the	subjects	know	which	treatment	is	the
experimental	treatment	and	which	is	the	control	treatment.	A	third	party	keeps	track	of	which	is	which	usually	using	number	codes.	Then	the	results	are	tested	for	a	statistically	significant	difference	between	the	two	groups.	Placebo	effect:	just	believing	you	will	improve	can	cause	improvement	in	a	medical	condition.	Replication	is	also	important	in
the	world	of	science.	If	an	experiment	cannot	be	repeated	and	produce	the	same	results,	then	the	theory	under	test	is	rejected.	Some	of	the	steps	in	an	experiment	are	listed	below:	Identify	the	population	of	interest	Specify	the	variables	that	will	be	measured.	Consider	protocols	and	procedures.	Decide	on	whether	the	population	can	be	measured	or	if
the	measurements	will	have	to	be	on	a	sample	of	the	population.	If	the	later,	determine	a	method	that	ensures	a	random	sample	that	is	of	sufficient	size	and	representative	of	the	population.	Collect	the	data	(perform	the	experiment).	Analyze	the	data.	Write	up	the	results	and	publish!	Note	directions	for	future	research,	note	also	any	problems	or
complications	that	arose	in	the	study.	Observational	study	Observational	studies	gather	statistics	by	observing	a	system	in	operation,	or	by	observing	people,	animals,	or	plants.	Data	is	recorded	by	the	observer.	Someone	sitting	and	counting	the	number	of	birds	that	land	or	take-off	from	a	bird	nesting	islet	on	the	reef	is	performing	an	observational
study.	Surveys	Surveys	are	usually	done	by	giving	a	questionnaire	to	a	random	sample.	Voluntary	responses	tend	to	be	negative.	As	a	result,	there	may	be	a	bias	towards	negative	findings.	Hidden	bias/unfair	questions:	Are	you	the	only	crazy	person	in	your	family?	Generalizing	The	process	of	extending	from	sample	results	to	population.	If	a	sample	is
a	good	random	sample,	representative	of	the	population,	then	some	sample	statistics	can	be	used	to	estimate	population	parameters.	Sample	means	and	proportions	can	often	be	used	as	point	estimates	of	a	population	parameter.	Although	the	mode	and	median,	covered	in	chapter	three,	do	not	always	well	predict	the	population	mode	and	median,
there	are	situations	in	which	a	mode	may	be	used.	If	a	good,	random,	and	representative	sample	of	students	finds	that	the	color	blue	is	the	favorite	color	for	the	sample,	then	blue	is	a	best	first	estimate	of	the	favorite	color	of	the	population	of	students	or	any	future	student	sample.	Favorite	colors	Favorite	colorFrequency	fRelative	Frequency	or
p(color)	Blue	3235%	Black	1820%	White	1011%	Green	910%	Red	67%	Pink	55%	Brown	44%	Gray	33%	Maroon22%	Orange11%	Yellow11%	Sums:	91100%	If	the	above	sample	of	91	students	is	a	good	random	sample	of	the	population	of	all	students,	then	we	could	make	a	point	estimate	that	roughly	35%	of	the	students	in	the	population	will	prefer
blue.	The	mode	is	the	value	that	occurs	most	frequently	in	the	data.	Spreadsheet	programs	can	determine	the	mode	with	the	function	MODE.	=MODE(data)	In	the	Fall	of	2000	the	statistics	class	gathered	data	on	the	number	of	siblings	for	each	member	of	the	class.	One	student	was	an	only	child	and	had	no	siblings.	One	student	had	13	brothers	and
sisters.	The	complete	data	set	is	as	follows:	1,	2,	2,	2,	2,	2,	3,	3,	4,	4,	4,	5,	5,	5,	7,	8,	9,	10,	12,	12,	13	The	mode	is	2	because	2	occurs	more	often	than	any	other	value.	Where	there	is	a	tie	there	is	no	mode.	For	the	ages	of	students	in	that	class	18,	19,	19,	20,	20,	21,	21,	21,	21,	22,	22,	22,	22,	23,	23,	24,	24,	25,	25,	26	...there	is	no	mode:	there	is	a	tie
between	21	and	22,	hence	there	no	single	most	frequent	value.	Spreadsheets	will,	however,	usually	report	a	mode	of	21	in	this	case.	Spreadsheets	often	select	the	first	mode	in	a	multi-modal	tie.	If	all	values	appear	only	once,	then	there	is	no	mode.	Spreadsheets	will	display	#N/A	or	#VALUE	to	indicate	an	error	has	occurred	-	there	is	no	mode.	No
mode	is	NOT	the	same	as	a	mode	of	zero.	A	mode	of	zero	means	that	zero	is	the	most	frequent	data	value.	Do	not	put	the	number	0	(zero)	for	"no	mode."	An	example	of	a	mode	of	zero	might	be	the	number	of	children	for	students	in	statistics	class.	The	median	is	the	central	(or	middle)	value	in	a	sorted	data	set.	If	a	number	sits	at	the	middle	of	a	sorted
data	set,	then	it	is	the	median.	If	the	middle	is	between	two	numbers,	then	the	median	is	half	way	between	the	two	middle	numbers.	For	the	sibling	data...	1,	2,	2,	2,	2,	2,	3,	3,	4,	4,	|4|,	5,	5,	5,	7,	8,	9,	10,	12,	12,	13	...the	median	is	4.	Remember	that	the	data	must	be	in	order	(sorted)	before	you	can	find	the	median.	For	the	data	2,	4,	6,	8	the	median	is
5:	(4+6)/2.	The	median	function	in	spreadsheets	is	MEDIAN.	=MEDIAN(data)	Mean	(average)	The	mean,	also	called	the	arithmetic	mean	and	also	called	the	average,	is	calculated	mathematically	by	adding	the	values	and	then	dividing	by	the	number	of	values	(the	sample	size	n).	If	the	mean	is	the	mean	of	a	population,	then	it	is	called	the	population
mean	μ.	The	letter	μ	is	a	Greek	lower	case	"m"	and	is	pronounced	"mu."	If	the	mean	is	the	mean	of	a	sample,	then	it	is	the	sample	mean	x.	The	symbol	x	is	pronounced	"x	bar."	population	mean	µ	=	sum	of	the	population	data	population	size	N	=	ΣX	N	sample	mean	x	‾	=	sum	of	the	sample	data	sample	size	n	=	Σx	n	The	sum	of	the	data	∑	x	can	be
determined	using	the	function	=SUM(data).	The	sample	size	n	can	be	determined	using	=COUNT(data).	Thus	=SUM(data)/COUNT(data)	will	calculate	the	mean.	There	is	also	a	single	function	that	calculates	the	mean.	The	function	that	directly	calculates	the	mean	is	AVERAGE	=AVERAGE(data)	Resistant	measures:	One	that	is	not	influenced	by
extremely	high	or	extremely	low	data	values.	The	median	tends	to	be	more	resistant	than	mean.	Population	mean	and	sample	mean	If	the	mean	is	measured	using	the	whole	population	then	this	would	be	the	population	mean.	If	the	mean	was	calculated	from	a	sample	then	the	mean	is	the	sample	mean.	Mathematically	there	is	no	difference	in	the	way
the	population	and	sample	mean	are	calculated.	Midrange	The	midrange	is	the	midway	point	between	the	minimum	and	the	maximum	in	a	set	of	data.	To	calculate	the	minimum	and	maximum	values,	spreadsheets	use	the	minimum	value	function	MIN	and	maximum	value	function	MAX.	=MIN(data)	=MAX(data)	The	MIN	and	MAX	function	can	take	a
list	of	comma	separated	numbers	or	a	range	of	cells	in	a	spreadsheet.	If	the	data	is	in	cells	A2	to	A42,	then	the	minimum	and	maximum	can	be	found	from:	=MIN(A2:A42)	=MAX(A2:A42)	The	midrange	can	then	be	calculated	from:	midrange	=	(maximum	+	minimum)/2	In	a	spreadsheet	use	the	following	formula:	=(MAX(data)+MIN(data))/2	2.2
Differences	in	the	Distribution	of	Data	In	addition	to	measures	of	the	middle,	measurements	of	the	spread	of	data	values	away	from	the	middle	are	important	in	statistical	analyses.	Spread	away	from	the	middle	usually	involves	numeric	data	values.	Perhaps	the	simplest	measures	of	spread	away	from	the	middle	involve	the	smallest	value,	the
minimum,	and	the	largest	value,	the	maximum.	Range	The	range	is	the	maximum	data	value	minus	the	minimum	data	value.	The	MIN	function	returns	the	smallest	numeric	value	in	a	data	set.	The	MAX	functions	returns	the	largest	numeric	value	in	a	data	set.	The	difference	between	the	maximum	value	and	the	minimum	value	is	called	the	range.
=MAX(data)−MIN(data)	The	range	is	a	useful	basic	statistic	that	provides	information	on	the	distance	between	the	most	extreme	values	in	the	data	set.	The	range	does	not	show	if	the	data	if	evenly	spread	out	across	the	range	or	crowded	together	in	just	one	part	of	the	range.	The	way	in	which	the	data	is	either	spread	out	or	crowded	together	in	a
range	is	referred	to	as	the	distribution	of	the	data.	One	of	the	ways	to	understand	the	distribution	of	the	data	is	to	calculate	the	position	of	the	quartiles	and	making	a	chart	based	on	the	results.	Percentiles,	Quartiles,	Box	and	Whisker	charts	The	median	is	the	value	that	is	the	middle	value	in	a	sorted	list	of	values.	At	the	median	50%	of	the	data	values
are	below	and	50%	are	above.	This	is	also	called	the	50th	percentile	for	being	50%	of	the	way	"through"	the	data.	If	one	starts	at	the	minimim,	25%	of	the	way	"through"	the	data,	the	point	at	which	25%	of	the	values	are	smaller,	is	the	25th	percentile.	The	value	that	is	25%	of	the	way	"through"	the	data	is	also	called	the	first	quartile.	Moving	on
"through"	the	data	to	the	median,	the	median	is	also	called	the	second	quartile.	Moving	past	the	median,	75%	of	the	way	"through"	the	data	is	the	75th	percentile	also	known	as	the	third	quartile.	Note	that	the	0th	quartile	is	the	minimum	and	the	fourth	quartile	is	the	maximum.	Spreadsheets	can	calculate	the	first,	second,	and	third	quartile	for	data
using	a	function,	the	quartile	function.	=QUARTILE(data,type)	Data	is	a	range	with	data.	Type	represents	the	type	of	quartile.	(0	=	0%	or	minimum	(zeroth	quartile),	1	=	25%	or	first	quartile,	2	=	50%	or	second	quartile	(also	the	median),	3	=	75%	or	third	quartile	and	4	=	100%	or	maximum	(fourth	quartile).	Thus	if	data	is	in	the	cells	A1:A20,	the	first
quartile	could	be	calculated	using:	=QUARTILE(A1:A20,1)	There	are	some	complex	subtleties	to	calculating	the	quartile.	For	a	full	and	thorough	treatment	of	the	subject	refer	to	Eric	Langford's	Quartiles	in	Elementary	Statistics,	Journal	of	Statistics	Education	Volume	14,	Number	3	(2006).	The	minimum,	first	quartile,	median,	third	quartile,	and
maximum	provide	a	compact	and	informative	five	number	summary	of	the	distribution	of	a	data	set.	InterQuartile	Range	The	InterQuartile	Range	(IQR)	is	the	range	between	the	first	and	third	quartile:	=QUARTILE(Data,3)	−	QUARTILE(Data,1)	There	are	some	subtleties	to	calculating	the	IQR	for	sets	with	even	versus	odd	sample	sizes,	but	this	text
leaves	those	details	to	the	spreadsheet	software	functions.	Quartiles,	Box	and	Whisker	plots	The	above	is	very	abstract	and	hard	to	visualize.	A	box	and	whisker	plot	takes	the	above	quartile	information	and	plots	a	chart	based	on	the	quartiles.	The	table	below	has	four	different	data	sets.	The	first	consists	of	a	single	value,	the	second	of	values	spread
uniformly	across	the	range,	the	third	has	values	concentrated	near	the	middle	of	the	range,	and	the	last	has	most	of	the	values	at	the	minimum	or	maximum.	univalue	uniform	peaked	symmetric	bimodal	5	1	1	1	5	2	4	1	5	3	4	1	5	4	5	1	5	5	5	5	5	6	5	9	5	7	6	9	5	8	6	9	5	9	9	9	Box	plots	display	how	the	data	is	spread	across	the	range	based	on	the	quartile
information	above.	A	box	and	whisker	plot	is	built	around	a	box	that	runs	from	the	value	at	the	25th	percentile	(first	quartile)	to	the	value	at	the	75th	percentile	(third	quartile).	The	length	of	the	box	spans	the	distance	from	the	value	at	the	first	quartile	to	the	third	quartile,	this	is	called	the	Inter-Quartile	Range	(IQR).	A	line	is	drawn	inside	the	box	at
the	location	of	the	50th	percentile.	The	50th	percentile	is	also	known	as	the	second	quartile	and	is	the	median	for	the	data.	Half	the	scores	are	above	the	median,	half	are	below	the	median.	Note	that	the	50th	percentile	is	the	median,	not	the	mean.	s1s2	1011	2011	3012	4013	5015	6018	7023	8031	9044	10065	11099	120154	The	basic	box	plot
described	above	has	lines	that	extend	from	the	first	quartile	down	to	the	minimum	value	and	from	the	third	quartile	to	the	maximum	value.	These	lines	are	called	"whiskers"	and	end	with	a	cross-line	called	a	"fence".	If,	however,	the	minimum	is	more	than	1.5	×	IQR	below	the	first	quartile,	then	the	lower	fence	is	put	at	1.5	×	IQR	below	the	first
quartile	and	the	values	below	the	fence	are	marked	with	a	round	circle.	These	values	are	referred	to	as	potential	outliers	-	the	data	is	unusually	far	from	the	median	in	relation	to	the	other	data	in	the	set.	Likewise,	if	the	maximum	is	more	than	1.5	×	IQR	beyond	the	third	quartile,	then	the	upper	fence	is	located	at	1.5	×	IQR	above	the	3rd	quartile.	The
maximum	is	then	plotted	as	a	potential	outlier	along	with	any	other	data	values	beyond	1.5	×	IQR	above	the	3rd	quartile.	There	are	actually	two	types	of	outliers.	Potential	outliers	between	1.5	×	IQR	and	3.0	×	IQR	beyond	the	fence	.	Extreme	outliers	are	beyond	3.0	×	IQR.	In	some	statistical	programs	potential	outliers	are	marked	with	a	circle
colored	in	with	the	color	of	the	box.	Extreme	outliers	are	marked	with	an	open	circle	-	a	circle	with	no	color	inside.	An	example	with	hypothetical	data	sets	is	given	to	illustrate	box	plots.	The	data	consists	of	two	samples.	Sample	one	(s1)	is	a	uniform	distribution	and	sample	two	(s2)	is	a	highly	skewed	distribution.	Box	and	whisker	plots,	variants,	with
ability	to	show	the	mean	To	generate	box	plots	the	online	tool	BoxPlotR	generates	box	plots	including	outliers.	The	first	row	should	be	the	data	label,	the	variable	to	be	plotted.	Data	can	be	copied	and	pasted	into	the	second	tab	using	the	Paste	data	option.	If	copying	and	pasting	multiple	columns	from	a	spread	sheet,	preset	the	separator	to	Tab.	For
advanced	users	notches	for	the	95%	confidence	interval	for	the	median	can	be	displayed.	The	plot	can	also	display	the	mean	and	the	95%	confidence	interval	for	the	mean.	The	tool	is	also	able	to	generate	violin	and	bean	plots,	and	change	whisker	definitions	from	Tukey	to	Spear	or	Altman	for	advanced	users.	If	the	tool	grays	out,	reload	the	page	and
recopy	the	data.	The	box	and	whisker	plot	is	a	useful	tool	for	exploring	data	and	determining	whether	the	data	is	symmetrically	distributed,	skewed,	and	whether	the	data	has	potential	outliers	-	values	far	from	the	rest	of	the	data	as	measured	by	the	InterQuartile	Range.	The	distribution	of	the	data	often	impacts	what	types	of	analysis	can	be	done	on
the	data.	The	distribution	is	also	important	to	determining	whether	a	measurement	that	was	done	is	performing	as	intended.	For	example,	in	education	a	"good"	test	is	usually	one	that	generates	a	symmetric	distribution	of	scores	with	few	outliers.	A	highly	skewed	distribution	of	scores	would	suggest	that	the	test	was	either	too	easy	or	too	difficult.
Outliers	would	suggest	unusual	performances	on	the	test.	2.3	Standard	Deviation	Consider	the	following	data:	Data	set	OneTwoThree	511	531	555	579	599	Data	set	OneTwoThree	Mode5No	mode1	Median555	Mean555	Min511	Max599	Neither	the	mode,	median,	nor	the	mean	reveal	clearly	the	differences	in	the	distribution	of	the	data	above.	The
mean	and	the	median	are	the	same	for	each	data	set.	The	mode	is	the	same	as	the	mean	and	the	median	for	the	first	data	set.	Data	set	two	has	no	mode.	Data	set	three	has	a	tie	causing	the	mode	function	to	select	the	number	closer	to	the	top	of	the	table	as	the	mode.	A	single	number	that	would	characterize	how	much	the	data	is	spread	out	would	be
useful.	As	noted	earlier,	the	range	is	one	way	to	capture	the	spread	of	the	data.	The	range	is	calculated	by	subtracting	the	smallest	value	from	the	largest	value.	In	a	spreadsheet:	=MAX(data)−MIN(data)	The	range	still	does	not	characterize	the	difference	between	data	sets	2	and	3.	In	data	set	two	the	data	is	uniformly	spread	from	the	minimum	to	the
maximum.	Data	set	three	has	more	data	values	at	the	minimum	and	the	maximum.	The	range	misses	this	difference	in	the	"internal"	spread	of	the	data	values.	To	capture	the	spread	of	the	data	we	use	a	measure	related	to	the	average	distance	of	the	data	from	the	mean.	We	call	this	the	standard	deviation.	If	we	have	a	population,	we	report	this
average	distance	as	the	population	standard	deviation.	If	we	have	a	sample,	then	our	average	distance	value	may	underestimate	the	actual	population	standard	deviation.	As	a	result	the	formula	for	sample	standard	deviation	adjusts	the	result	mathematically	to	be	slightly	larger.	For	our	purposes	these	numbers	are	calculated	using	spreadsheet
functions.	Sample	standard	deviation	One	way	to	distinguish	the	difference	in	the	distribution	of	the	numbers	in	data	set	2	and	data	set	3	above	is	to	use	the	sample	standard	deviation.	Data	set	one	has	a	sample	standard	deviation	of	zero:	there	is	no	spread	in	the	data	values,	every	value	is	5.	Data	set	two	has	a	sample	standard	deviation	of
3.16227766.	Data	set	three	has	a	sample	standard	deviation	of	4.000	Note	that	the	sample	standard	deviation	well	reflects	the	larger	spread	seen	in	data	set	three.	The	mathematical	formula	for	sample	the	standard	deviation	is	subtracts	the	mean	from	each	and	every	data	value,	squares	that	difference,	adds	up	the	squares,	divides	by	the	sample	size
n	minus	one,	and	then	takes	the	square	root	of	the	result.	Σ(x−x̅)²	n−1	In	spreadsheets	there	is	a	single	function	that	performs	all	of	the	above	operations	and	calculates	the	sample	standard	deviation	sx,	the	STDEV	function.	The	STDEV	function	is	the	function	that	will	be	used	in	this	course.	=STDEV(data)	In	this	text	the	symbol	for	the	sample
standard	deviation	in	this	text	is	sx.	In	this	text	the	symbol	for	the	population	standard	deviation	is	the	Greek	lower	case	"s":	σ.	The	symbol	sx	usually	refers	the	standard	deviation	of	single	variable	x	data.	If	there	is	y	data,	the	standard	deviation	of	the	y	data	is	sy.	Other	symbols	that	are	used	for	standard	deviation	include	s	and	σx.	Some	calculators
use	the	unusual	and	confusing	notations	σxn−1	and	σxn	for	sample	and	population	standard	deviations.	In	this	class	we	always	use	the	sample	standard	deviation	in	our	calculations.	The	sample	standard	deviation	is	calculated	in	a	way	such	that	the	sample	standard	deviation	is	slightly	larger	than	the	result	of	the	formula	for	the	population	standard
deviation.	This	adjustment	is	needed	because	a	population	tends	to	have	a	slightly	larger	spread	than	a	sample.	There	is	a	greater	probability	of	outliers	in	the	population	data.	Coefficient	of	variation	CV	The	Coefficient	of	Variation	is	calculated	by	dividing	the	standard	deviation	(usually	the	sample	standard	deviation)	by	the	mean.
=STDEV(data)/AVERAGE(data)	Note	that	the	CV	can	be	expressed	as	a	percentage:	Group	2	has	a	CV	of	52%	while	group	3	has	a	CV	of	69%.	A	deviation	of	3.46	is	large	for	a	mean	of	5	(3.46/5	=	69%)	but	would	be	small	if	the	mean	were	50	(3.46/50	=	7%).	So	the	CV	can	tell	us	how	important	the	standard	deviation	is	relative	to	the	mean.	Rules	of
thumb	regarding	spread	As	an	approximation,	the	standard	deviation	for	data	that	has	a	symmetrical,	heap-like	distribution	is	roughly	one-quarter	of	the	range.	If	given	only	minimum	and	maximum	values	for	data,	this	rule	of	thumb	can	be	used	to	estimate	the	standard	deviation.	At	least	75%	of	the	data	will	be	within	two	standard	deviations	of	the
mean,	regardless	of	the	shape	of	the	distribution	of	the	data.	At	least	89%	of	the	data	will	be	within	three	standard	deviations	of	the	mean,	regardless	of	the	shape	of	the	distribution	of	the	data.	If	the	shape	of	the	distribution	of	the	data	is	a	symmetrical	heap,	then	as	much	as	95%	of	the	data	will	be	within	two	standard	deviations	of	the	mean.	Data
beyond	two	standard	deviations	away	from	the	mean	is	considered	"unusual"	data.	Basic	statistics	and	their	interaction	with	the	levels	of	measurement	Levels	of	measurement	and	appropriate	measures	Level	of	measurementAppropriate	measure	of	middle	Appropriate	measure	of	spread	nominal	mode	none	or	number	of	categories	ordinal	median
range	intervalmedian	or	meanrange	or	standard	deviation	ratio	mean	standard	deviation	At	the	interval	level	of	measurement	either	the	median	or	mean	may	be	more	appropriate	depending	on	the	specific	system	being	studied.	If	the	median	is	more	appropriate,	then	the	range	should	be	quoted	as	a	measure	of	the	spread	of	the	data.	If	the	mean	is
more	appropriate,	then	the	standard	deviation	should	be	used	as	a	measure	of	the	spread	of	the	data.	Another	way	to	understand	the	levels	at	which	a	particular	type	of	measurement	can	be	made	is	shown	in	the	following	table.	Levels	at	which	a	particular	statistic	or	parameter	has	meaning:	Level	of	measurement	Nominal	Ordinal	Interval	Ratio
sample	size	mode		minimum		maximum		range		median		mean		standard	deviation		coefficient	of	variation	For	example,	a	mode,	median,	and	mean	can	be	calculated	for	ratio	level	measures.	Of	those,	the	mean	is	usually	considered	the	best	measure	of	the	middle	for	a	random	sample	of	ratio	level	data.	2.4	Variables	A	variable	is	defined	as	any
measurement	that	can	take	on	different	data	values.	Variables	are	named	containers	for	data	values.	In	statistics	variables	are	often	words	such	as	marble	color,	leaflet	length,	or	marble	position.	In	a	spreadsheet,	variables	are	usually	put	in	row	one	with	the	data	in	the	rows	below	row	one.	A	variable	can	also	have	units	of	measure.	Variables	are	said
to	be	at	the	type	and	level	of	measurement	of	the	data	that	the	variable	contains.	Thus	variables	can	bed	qualitative	or	quantitative,	discrete	or	continuous.	Variables	can	be	at	the	nominal,	ordinal,	interval,	or	ratio	level	of	measurement.	Discrete	Variables	When	there	are	a	countable	number	of	values	that	result	from	observations,	we	say	the	variable
producing	the	results	is	discrete.	The	nominal	and	ordinal	levels	of	measurement	almost	always	measure	a	discrete	variable.	The	following	examples	are	typical	values	for	discrete	variables:	true	or	false	(2	values)	yes	or	no	(2	values)	strongly	agree	|	agree	|	neutral	|	disagree	|	strongly	disagree	(5	values)	The	last	example	above	is	a	typical	result	of	a
type	of	survey	called	a	Likert	survey	developed	by	Renis	Likert	in	1932.	When	reporting	the	"middle	value"	for	a	discrete	distribution	at	the	ordinal	level	it	is	usually	more	appropriate	to	report	the	median.	For	further	reading	on	the	matter	of	using	mean	values	with	discrete	distributions	refer	to	the	pages	by	Nora	Mogey	and	by	the	Canadian
Psychiatric	Association.	Note	that	if	the	variable	measures	only	the	nominal	level	of	measurement,	then	only	the	mode	is	likely	to	have	any	statistical	"meaning",	the	nominal	level	of	measurement	has	no	"middle"	per	se.	There	may	be	rare	instances	in	which	looking	at	the	mean	value	and	standard	deviation	is	useful	for	looking	at	comparative
performance,	but	it	is	not	a	recommended	practice	to	use	the	mean	and	standard	deviation	on	a	discrete	distribution.	The	Canadian	Psychiatric	Association	discusses	when	one	may	be	able	to	"break"	the	rules	and	calculate	a	mean	on	a	discrete	distribution.	Even	then,	bear	in	mind	that	ratios	between	means	have	no	"meaning!"	For	example,
questionnaire's	often	generate	discrete	results:	How	often	do	you	drink	caffeinated	drinks	such	as	coffee,	tea,	or	cola?	Never	About	once	a	week	A	few	days	a	week	Every	day	How	often	do	you	chew	betelnut?	Never	About	once	a	week	A	few	days	a	week	Every	day	How	often	do	you	chew	tobacco	or	chew	betel	nut	with	tobacco?	Never	About	once	a
week	A	few	days	a	week	Every	day	How	often	do	you	smoke	cigarettes?	Never	About	once	a	week	A	few	days	a	week	Every	day	How	often	do	you	drink	alcohol?	Never	About	once	a	week	A	few	days	a	week	Every	day	There	are	only	four	possible	results	for	each	question.	Numeric	values	(0,	1,	2,	3)	could	be	assigned	to	the	four	results,	but	the
numbers	would	have	no	particular	direct	meaning.	For	example,	if	the	average	was	2.5,	that	would	not	translate	back	to	a	specific	number	of	days	per	week	of	usage.	Continuous	Variables	When	there	is	a	infinite	(or	uncountable)	number	of	values	that	may	result	from	observations,	we	say	that	the	variable	is	continuous.	Physical	measurements	such
as	height,	weight,	speed,	and	mass,	are	considered	continuous	measurements.	Bear	in	mind	that	our	measurement	device	might	be	accurate	to	only	a	certain	number	of	decimal	places.	The	variable	is	continuous	because	better	measuring	devices	should	produce	more	accurate	results.	The	following	examples	are	continuous	variables:	distance	time
mass	length	height	depth	weight	speed	body	fat	When	reporting	the	"middle	value"	for	a	continuous	distribution	it	is	most	often	appropriate	to	report	the	mean	and	standard	deviation.	The	mean	and	standard	deviation	only	have	"meaning"	for	the	ratio	level	of	measurement.	Interactions	between	levels	of	measure,	variable	type,	and	measures	of
middle	and	spread	Level	of	measurement	Typical	variable	type	Typical	measure	of	middle	Typical	measure	of	variation	nominaldiscretemodenone	ordinaldiscretemedianrange	intervaldiscretemedianrange	ratiocontinuousmean*sample	standard	deviation	*For	some	ratio	level	data	sets	the	median	may	be	preferable	to	the	mean.	If	outliers	are	known	to
be	likely	to	be	errors	in	measurement,	then	the	median	can	produce	a	better	estimate	of	the	middle	of	a	data	set.	2.5	Z-score:	A	Measure	of	Relative	Standing	Z-scores	are	a	useful	way	to	compare	or	combine	scores	from	data	that	has	different	means	and	standard	deviations.	Z-scores	are	an	application	of	the	above	measures	of	middle	and	spread.
Remember	that	the	mean	is	the	result	of	adding	all	of	the	values	in	the	data	set	and	then	dividing	by	the	number	of	values	in	the	data	set.	The	word	mean	and	average	are	used	interchangeably	in	statistics.	Recall	also	that	the	sample	standard	deviation	can	be	thought	of	as	a	mathematical	calculation	of	the	average	distance	of	the	data	from	the	mean
of	the	data.	Note	that	although	I	use	the	words	average	and	mean,	the	sentence	could	also	be	written	"the	mean	distance	of	the	data	from	the	mean	of	the	data."	Z-Scores	Z-scores	simply	indicate	how	many	standard	deviations	away	from	the	mean	is	a	particular	data	value.	This	is	termed	"relative	standing"	as	it	is	a	measure	of	where	in	the	data	the
particular	data	value	is	located	relative	to	the	mean	as	counted	in	units	of	standard	deviations.	The	formula	for	calculating	the	z-score	is:	If	the	population	mean	µ	and	population	standard	deviation	σ	are	known,	then	the	formula	for	the	z-score	for	a	data	value	x	is:	z=	(x−µ	)	σ	Using	the	sample	mean	x	and	sample	standard	deviation	sx,	the	formula	for
a	data	value	x	is:	z=	(x−	x	‾	)	sx	Note	the	parentheses!	When	typing	in	a	spreadsheet	do	not	forget	the	parentheses.	=(value−AVERAGE(data))/STDEV(data)	Data	that	is	two	standard	deviations	below	the	mean	will	have	a	z-score	of	−2,	data	that	is	two	standard	deviations	above	the	mean	will	have	a	z-score	of	+2.	Data	beyond	two	standard	deviations
away	from	the	mean	will	have	z-scores	below	−2	or	above	2.	A	data	value	that	has	a	z-score	below	−2	or	above	+2	is	considered	an	unusual	value,	an	extraordinary	data	value.	These	values	may	also	be	outliers	on	a	box	plot	depending	on	the	distribution.	Box	plot	outliers	and	extraordinary	z-scores	are	two	ways	to	characterize	unusually	extreme	data
values.	There	is	no	simple	relationship	between	box	plot	outliers	and	extraordinary	z-scores.	Why	z-scores?	Suppose	a	test	has	a	mean	score	of	10	and	a	standard	deviation	of	2	with	a	total	possible	of	20.	Suppose	a	second	test	has	the	same	mean	of	10	and	total	possible	of	20	but	a	standard	deviation	of	8.	On	the	first	test	a	score	of	18	would	be	rare,
an	unusual	score.	On	the	first	test	89%	of	the	students	would	have	scored	between	6	and	16	(three	standard	deviations	below	the	mean	and	three	standard	deviations	above	the	mean.	On	the	second	test	a	score	of	18	would	only	be	one	standard	deviation	above	the	mean.	This	would	not	be	unusual,	the	second	test	had	more	spread.	Adding	two	scores
of	18	and	saying	the	student	had	a	score	of	36	out	of	40	devalues	what	is	a	phenomenal	performance	on	the	first	test.	Converting	to	z-scores,	the	relative	strength	of	the	performance	on	test	one	is	valued	more	strongly.	The	z-score	on	test	one	would	be	(18-10)/2	=	4,	while	on	test	two	the	z-score	would	be	(18-10)/8	=	1.	The	unusually	outstanding
performance	on	test	one	is	now	reflected	in	the	sum	of	the	z-scores	where	the	first	test	contributes	a	sum	of	4	and	the	second	test	contributes	a	sum	of	1.	When	values	are	converted	to	z-scores,	the	mean	of	the	z-scores	is	zero.	A	student	who	scored	a	10	on	either	of	the	tests	above	would	have	a	z-score	of	0.	In	the	world	of	z-scores,	a	zero	is	average!
Z-scores	also	adjust	for	different	means	due	to	differing	total	possible	points	on	different	tests.	Consider	again	the	first	test	that	had	a	mean	score	of	10	and	a	standard	deviation	of	2	with	a	total	possible	of	20.	Now	consider	a	third	test	with	a	mean	of	100	and	standard	deviation	of	40	with	a	total	possible	of	200.	On	this	third	test	a	score	of	140	would
be	high,	but	not	unusually	high.	Adding	the	scores	and	saying	the	student	had	a	score	of	158	out	of	220	again	devalues	what	is	a	phenomenal	performance	on	test	one.	The	score	on	test	one	is	dwarfed	by	the	total	possible	on	test	three.	Put	another	way,	the	18	points	of	test	one	are	contributing	only	11%	of	the	158	score.	The	other	89%	is	the	test
three	score.	We	are	giving	an	eight-fold	greater	weight	to	test	three.	The	z-scores	of	4	and	1	would	add	to	five.	This	gives	equal	weight	to	each	test	and	the	resulting	sum	of	the	z-scores	reflects	the	strong	performance	on	test	one	with	an	equal	weight	to	the	ordinary	performance	on	test	three.	Z-scores	only	provide	the	relative	standing.	If	a	test	is
given	again	and	all	students	who	take	the	test	do	better	the	second	time,	then	the	mean	rises	and	like	a	tide	"lifts	all	the	boats	equally."	Thus	an	individual	student	might	do	better,	but	because	the	mean	rose,	their	z-score	could	remain	the	same.	This	is	also	the	downside	to	using	z-scores	to	compare	performances	between	tests	-	changes	in	"sea	level"
are	obscured.	One	would	have	to	know	the	mean	and	standard	deviation	and	whether	they	changed	to	properly	interpret	a	z-score.	The	table	below	includes	FSM	census	2000	data	and	student	seat	numbers	for	the	national	site	of	COM-FSM	circa	2004.	State	Population	(2000)	Fractional	share	of	national	population	(relative	frequency)	Number	of
student	seats	held	by	state	at	the	national	campus	Fractional	share	of	the	national	campus	student	seats	Chuuk535950.56790.2	Kosrae76860.073160.09	Pohnpei344860.3221220.62	Yap112410.112870.08		107008134041	Circle	or	pie	charts	In	a	circle	chart	the	whole	circle	is	100%	Used	when	data	adds	to	a	whole,	e.g.	state	populations	add	to	yield
national	population.	A	pie	chart	of	the	state	populations:	The	following	table	includes	data	from	the	2010	FSM	census	as	an	update	to	the	above	data.	State	Population	(2010)	Relative	frequency	Chuuk48651	Kosrae6616	Pohnpei35981	Yap11376	Sum:102624	Column	charts	Column	charts	are	also	called	bar	graphs.	A	column	chart	of	the	student	seats
held	by	each	state	at	the	national	site:	Pareto	chart	If	a	column	chart	is	sorted	so	that	the	columns	are	in	descending	order,	then	it	is	called	a	Pareto	chart.	Descending	order	means	the	largest	value	is	on	the	left	and	the	values	decrease	as	one	moves	to	the	right.	Pareto	charts	are	useful	ways	to	convey	rank	order	as	well	as	numerical	data.	Line	graph
A	line	graph	is	a	chart	which	plots	data	as	a	line.	The	horizontal	axis	is	usually	set	up	with	equal	intervals.	Line	graphs	are	not	used	in	this	course	and	should	not	be	confused	with	xy	scattergraphs.	XY	Scatter	graph	When	you	have	two	sets	of	continuous	data	(value	versus	value,	no	categories),	use	an	xy	graph.	These	will	be	covered	in	more	detail	in
the	chapter	on	linear	regressions.	3.2	Histograms	and	Frequency	Distributions	A	distribution	counts	the	number	of	elements	of	data	in	either	a	category	or	within	a	range	of	values.	Plotting	the	count	of	the	elements	in	each	category	or	range	as	a	column	chart	generates	a	chart	called	a	histogram.	The	histogram	shows	the	distribution	of	the	data.	The
height	of	each	column	shows	the	frequency	of	an	event.	This	distribution	often	provides	insight	into	the	data	that	the	data	itself	does	not	reveal.	In	the	histogram	below,	the	distribution	for	male	body	fat	among	statistics	students	has	two	peaks.	The	two	peaks	suggest	that	there	are	two	subgroups	among	the	men	in	the	statistics	course,	one	subgroup
that	is	at	a	healthy	level	of	body	fat	and	a	second	subgroup	at	a	higher	level	of	body	fat.	The	ranges	into	which	values	are	gathered	are	called	bins,	classes,	or	intervals.	This	text	tends	to	use	classes	or	bins	to	describe	the	ranges	into	which	the	data	values	are	grouped.	Nominal	level	of	measurement	At	the	nominal	level	of	measurement	one	can
determine	the	frequency	of	elements	in	a	category,	such	as	students	by	state	in	a	statistics	course.	State	FrequencyRelative	Frequency	Chuuk	6	0.11	Kosrae	6	0.11	Pohnpei310.57	Yap	110.20	Sums:	541.00	The	sum	of	the	frequencies	is	the	sample	size.	The	sum	of	the	relative	frequencies	is	always	one.	The	sum	of	the	frequencies	being	the	sample	size
and	the	sum	of	the	relative	frequencies	being	one	are	ways	to	check	your	frequency	table.	Ordinal	level	of	measurement	Data	values	into	classes	comprised	of	each	unique	data	value	At	the	ordinal	level,	a	frequency	distribution	can	be	done	using	the	rank	order,	counting	the	number	of	elements	in	each	rank	order	to	obtain	a	frequency.	When	the
frequency	data	is	calculated	in	this	way,	the	distribution	is	not	grouped	into	a	smaller	number	of	classes.	Note	that	some	classes	could	be	empty	-	the	classes	must	still	be	equal	width.	AgeFrequencyRel	Freq	1710.02	1850.1	19140.27	20120.24	2190.18	2210.02	2330.06	2430.06	2510.02	2610.02	2710.02	sums511	Data	gathered	into	a	number	of
classes	fewer	than	the	number	of	unique	data	values	The	ranks	can	be	collected	together,	classed,	to	reduce	the	number	of	rank	order	categories.	in	the	example	below	the	age	data	in	gathered	into	two-year	cohorts.	AgeFrequencyRel	Freq	19200.39	21210.41	2340.08	2540.08	2720.04	Sums:511	3.3	Histogram	charts	and	Frequency	tables	at	the	ratio
level	of	measurement	Ratio	level	data	is	usually	a	continuous	variable.	The	number	of	possible	values	cannot	be	counted.	At	the	ratio	level	data	is	divided	into	intervals	of	equal	width	from	the	minimum	value	to	the	maximum	value.	The	intervals	are	called	classes	by	statisticians.	The	intervals	are	called	buckets	in	Google	Sheets™.	Histogram	chart
Google	Sheets™	can	automatically	generate	a	histogram	chart	from	raw	data.	The	specific	dialog	boxes	tend	to	change	in	terms	of	layout	and	new	edit	capabilities	appear	over	time.	Pre-select	the	data	range	and	from	the	Insert	menu	choose	Chart.	Choose	the	histogram	chart	option.	At	this	point	the	histogram	chart	could	be	inserted	into	the	spread
sheet	using	the	automatically	chosen	number	of	classes	(buckets).	Google	Sheets™	also	provides	the	option	to	specify	the	number	of	classes	(buckets).	To	generate	a	histogram	with	a	specific	number	of	classes,	determine	the	minimum,	maximum,	and	range.	Divide	the	range	by	the	number	of	desired	classes	(buckets)	to	obtain	the	class	width.	In	the
following	example	a	five	bucket	histogram	chart	was	desired.	With	the	Axis	set	to	Horizontal...	Enter	the	width	as	the	bucket	size.	Further	below	enter	the	minimum	value,	and	maximum	values.	Insert.	Google	and	the	Google	logo	are	registered	trademarks	of	Google	Inc.,	used	with	permission.	Frequency	tables	Each	bucket	has	a	smallest	value	called
the	class	lower	limit.	Each	bucket	has	a	largest	value	called	a	class	upper	limit.	The	number	of	data	values	in	each	bucket	is	called	the	frequency.	Spreadsheets	have	a	FREQUENCY	function	that	uses	the	class	upper	limits	to	automatically	count	the	frequencies	for	each	bucket.	To	calculate	the	class	upper	limits	the	minimum	and	maximum	value	in	a
data	set	must	be	determined.	Spreadsheets	include	functions	to	calculate	the	minimum	value	MIN	and	maximum	value	MAX	in	a	data	set.	=MIN(data)	=MAX(data)	The	minimum	and	maximum	are	used	to	calculate	the	range.	The	width	of	each	bucket	is	equal	to	the	range	divided	by	the	number	of	desired	buckets.	Find	the	minimum	value	of	the	data
set	using	the	MIN	function	Find	the	maximum	value	of	the	data	set	using	the	MAX	function	Calculate	the	range	by	subtracting	the	MIN	from	the	MAX:	range	=	maximum	value	−	minimum	value	Decide	on	the	desired	number	of	classes	(buckets)	Divide	the	range	by	the	number	of	classes	to	calculate	the	class	width	Calculate	the	class	upper	limits	(see
below)	Put	the	class	upper	limits	into	a	column	of	cells	Use	the	FREQUENCY	function	to	count	the	number	of	values	in	each	class	(bucket).	Create	a	column	chart	Class	Upper	Limits	(CUL)Frequency	=min	+	class	width	+	class	width	+	class	width	+	class	width	+	class	width	=	max	For	the	Orange	MM	data	determine	the	minimum	and	maximum.
Calculate	the	range.	For	a	five	class	(bucket)	frequency	table,	divide	the	range	by	five	to	obtain	the	width.	Use	the	table	above	to	enter	the	class	upper	limits.	Pre-select	the	cells	into	which	the	FREQUENCY	array	function	will	place	the	frequencies.	Note	that	one	selects	all	of	the	cells	before	typing	the	formula!	Then	enter	the	formula.	Select	or	type
in	the	spreadsheet	addresses	containing	the	data.	Type	a	comma,	and	then	enter	the	spreadsheet	addresses	containing	the	class	upper	limits.	Close	the	parentheses	and	press	enter.	Relative	frequencies	can	be	added	in	a	third	column.	As	noted	above:	The	sum	of	the	frequencies	is	the	sample	size.	The	sum	of	the	relative	frequencies	is	always	one.
The	sum	of	the	frequencies	being	the	sample	size	and	the	sum	of	the	relative	frequencies	being	one	are	ways	to	check	your	frequency	table.	Google	and	the	Google	logo	are	registered	trademarks	of	Google	Inc.,	used	with	permission.	3.4	Shapes	of	Distributions	The	shapes	of	distributions	have	names	by	which	they	are	known.	One	of	the	aspects	of	a
sample	that	is	often	similar	to	the	population	is	the	shape	of	the	distribution.	If	a	good	random	sample	of	sufficient	size	has	a	symmetric	distribution,	then	the	population	is	likely	to	have	a	symmetric	distribution.	The	process	of	projecting	results	from	a	sample	to	a	population	is	called	generalizing.	Thus	we	can	say	that	the	shape	of	a	sample
distribution	generalizes	to	a	population.	uniformpeakedsymmetric	skewed	1	1	1	2	5	5	3	7	8	4	9	9	5	10	11	6	11	12	7	12	13	8	12	14	9	13	15	10	13	16	11	14	17	12	14	18	13	14	19	14	14	20	15	15	20	16	15	21	17	15	22	18	15	23	19	16	24	20	16	23	21	17	24	22	17	25	23	18	26	24	19	27	25	20	25	26	22	26	27	24	27	28	28	28	Both	box	plots	and	frequency
histograms	show	the	distribution	of	the	data.	Box	plots	and	frequency	histograms	are	two	different	views	of	the	distribution	of	the	data.	There	is	a	relationship	between	the	frequency	histogram	and	the	associated	box	plot.	The	following	charts	show	the	frequency	histograms	and	box	plots	for	three	distributions:	a	uniform	distribution,	a	peaked
symmetric	heap	distribution,	and	a	left	skewed	distribution.	The	uniform	data	is	evenly	distributed	across	the	range.	The	whiskers	run	from	the	maximum	to	minimum	value	and	the	InterQuartile	Range	is	the	largest	of	the	three	distributions.	The	peaked	symmetric	data	has	the	smallest	InterQuartile	Range,	the	bulk	of	the	data	is	close	to	the	middle	of
the	distribution.	In	the	box	plot	this	can	be	seen	in	the	small	InterQuartile	range	centered	on	the	median.	The	peaked	symmetric	data	has	two	potential	outliers	at	the	minimum	and	maximum	values.	For	the	peaked	symmetric	distribution	data	is	usually	found	near	the	middle	of	the	distribution.	The	skewed	data	has	the	bulk	of	the	data	near	the
maximum.	In	the	box	plot	this	can	be	seen	by	the	InterQuartile	Range	-	the	box	-	being	"pushed"	up	towards	the	maximum	value.	The	whiskers	are	also	of	an	unequal	length,	another	sign	of	a	skewed	distribution.	A	runner	runs	from	the	College	of	Micronesia-FSM	National	campus	to	PICS	via	the	powerplant/Nanpohnmal	back	road.	The	runner	tracks
his	time	and	distance.	LocationTime	x	(minutes)Distance	y	(km)	College00	Dolon	Pass203.3	Turn-off	for	Nanpohnmal254.5	Bottom	of	the	beast335.7	Top	of	the	beast34.55.9	Track	West559.7	PICS5610.1	Is	there	a	relationship	between	the	time	and	the	distance?	If	there	is	a	relationship,	then	data	will	fall	in	a	patterned	fashion	on	an	xy	graph.	If	there
is	no	relationship,	then	there	will	be	no	shape	to	the	pattern	of	the	data	on	a	graph.	If	the	relationship	is	linear,	then	the	data	will	fall	roughly	along	a	line.	Plotting	the	above	data	yields	the	following	graph:	The	data	falls	roughly	along	a	line,	the	relationship	appears	to	linear.	If	we	can	find	the	equation	of	a	line	through	the	data,	then	we	can	use	the
equation	to	predict	how	long	it	will	take	the	runner	to	cover	distances	not	included	in	the	table	above,	such	as	five	kilometers.	In	the	next	image	a	best	fit	line	has	been	added	to	the	graph.	The	best	fit	line	is	also	called	the	least	squares	line	because	the	mathematical	process	for	determining	the	line	minimizes	the	square	of	the	vertical	displacement	of
the	data	points	from	the	line.	The	process	of	determining	the	best	fit	line	is	also	known	and	performing	a	linear	regression.	Sometimes	the	line	is	referred	to	as	a	linear	regression.	The	graph	of	time	versus	distance	for	a	runner	is	a	line	because	a	runner	runs	at	the	same	pace	kilometer	after	kilometer.	Sample	size	n	for	paired	data	For	paired	data	the
sample	size	n	is	the	number	of	pairs.	This	is	usually	also	the	number	of	rows	in	the	data	table.	Do	NOT	count	both	the	x	and	y	values,	the	(x,y)	data	should	be	counted	in	pairs.	4.2	Slope	and	Intercept	Slope	A	spreadsheet	is	used	to	find	the	slope	and	the	y-intercept	of	the	best	fit	line	through	the	data.	To	get	the	slope	m	use	the	function:	=SLOPE(y-
values,x-values)	Note	that	the	y-values	are	entered	first,	the	x-values	are	entered	second.	This	is	the	reverse	of	traditional	algebraic	order	where	coordinate	pairs	are	listed	in	the	order	(x,	y).	The	x	and	y-values	are	usually	arranged	in	columns.	The	column	containing	the	x	data	is	usually	to	the	left	of	the	column	containing	the	y-values.	An	example
where	the	data	is	in	the	first	two	columns	from	row	two	to	forty-two	can	be	seen	below.	=SLOPE(B2:B42,A2:A42)	Intercept	The	intercept	is	usually	the	starting	value	for	a	function.	Often	this	is	the	y	data	value	at	time	zero,	or	distance	zero.	To	get	the	intercept:	=INTERCEPT(y-values,x-values)	Note	that	intercept	also	reverses	the	order	of	the	x	and	y
values!	For	the	runner	data	above	the	equation	is:	distance	=	slope	*	time	+	y-intercept	distance	=	0.18	*	time	+	−	0.13	y	=	0.18	*	x	+	−	0.13	or	y	=	0.18x	−	0.13	where	x	is	the	time	and	y	is	the	distance	In	algebra	the	equation	of	a	line	is	written	as	y	=	m*x	+	b	where	m	is	the	slope	and	b	is	the	intercept.	In	statistics	the	equation	of	a	line	is	written	as
y	=	a	+	b*x	where	a	is	the	intercept	(the	starting	value)	and	b	is	the	slope.	The	two	fields	have	their	own	traditions,	and	the	letters	used	for	slope	and	intercept	are	a	tradition	that	differs	between	the	field	of	mathematics	and	the	field	of	statistics.	Using	the	y	=	mx	+	b	equation	we	can	make	predictions	about	how	far	the	runner	will	travel	given	a	time,
or	how	long	a	duration	of	time	the	runner	will	run	given	a	distance.	For	example,	according	the	equation	above,	a	45	minute	run	will	result	in	the	runner	covering	0.18*45	-	0.13	=	7.97	kilometers.	Using	the	inverse	of	the	equation	we	can	predict	that	the	runner	will	run	a	five	kilometer	distance	in	28.5	minutes	(28	minutes	and	30	seconds).	Given	any
time,	we	can	calculate	the	distance.	Given	any	distance,	we	can	solve	for	the	time.	Creating	an	xy	scattergraph	using	Google	Sheets™	The	data	used	in	the	following	examples	is	contained	in	the	following	table.	Evening	joggle	(run+juggle)	locationTime	x	(min)Distance	y	(m)	Dolihner0.00	Pohnpei	campus9.01250	Mesenieng	outbound16.72600
Mesenieng	inbound26.64200	Pwunso	botanic35.75300	Dolihner41.96190	First	select	the	data	to	be	graphed.	Choose	either	Insert:	Chart	or	click	on	the	Insert	Chart	icon	on	the	menubar.	Choose	the	xy	scatter	graph	in	the	Chart	Editor.	The	chart	editor's	third	tab,	Customization,	can	be	used	to	display	the	equation	of	the	line.	The	trendline	options
are	at	the	bottom	of	the	dialog	box.	Options	include	linear,	exponential,	and	polynomial.	In	this	text	linear	trendlines	are	used.	Once	the	linear	option	is	chosen,	the	dialog	box	expands	to	show	other	options	including	displaying	the	trendline	and	R².	R²	is	covered	later	in	this	chapter.	The	location	of	the	legend	can	also	be	selected	to	"unwrap"	the
equation	of	the	line.	In	some	legend	locations	the	legend	might	not	display	both	the	equation	and	the	R²	value.	Google	and	the	Google	logo	are	registered	trademarks	of	Google	Inc.,	used	with	permission.	Advanced	topic:	Linear	regressions	and	confidence	intervals	The	LINEST	array	function	in	Google	Sheets™	can	be	used,	=LINEST(y-data,x-
data,true,true)	to	obtain	the	statistics	necessary	to	construct	95%	confidence	intervals	for	the	slope	and	intercept.	This	example	uses	the	same	evening	run	data	provided	above.	4.3	Relationships	between	variables	After	plotting	the	x	and	y	data,	the	xy	scattergraph	helps	determine	the	nature	of	the	relationship	between	the	x	values	and	the	y	values.
If	the	points	lie	along	a	straight	line,	then	the	relationship	is	linear.	If	the	points	form	a	smooth	curve,	then	the	relationship	is	non-linear	(not	a	line).	If	the	points	form	no	pattern	then	the	relationship	is	random.	major	grid	lines	0	10	20	30	40	50	60	70	80	90	100	x-axis	labels	0	10	20	30	40	50	60	70	80	90	100	linear	quadratic	data	points	as	rectangles
Linear:	Positive	relationship	Linear:	Negative	relationship	Non-linear	relationship	No	relationship:	random	correlation	Relationships	between	two	sets	of	data	can	be	positive:	the	larger	x	gets,	the	larger	y	gets.	Relationships	between	two	sets	of	data	can	be	negative:	the	larger	x	gets,	the	smaller	y	gets.	Relationships	between	two	sets	of	data	can	be
non-linear	Relationships	between	two	sets	of	data	can	be	random:	no	relationship	exists!	For	the	runner	data	above,	the	relationship	is	a	positive	relationship.	The	points	line	along	a	line,	therefore	the	relationship	is	linear.	An	example	of	a	negative	relationship	would	be	the	number	of	beers	consumed	by	a	student	and	a	measure	of	the	physical
coordination.	The	more	beers	consumed	the	less	their	coordination!	4.4	Correlation	For	a	linear	relationship,	the	closer	to	a	straight	line	the	points	fall,	the	stronger	the	relationship.	The	measurement	that	describes	how	closely	to	a	line	are	the	points	is	called	the	correlation.	The	following	example	explores	the	correlation	between	the	distance	of	a
business	from	a	city	center	versus	the	amount	of	product	sold	per	person.	In	this	case	the	business	are	places	that	serve	pounded	Piper	methysticum	plant	roots,	known	elsewhere	as	kava	but	known	locally	as	sakau.	This	business	is	unique	in	that	customers	self-limit	their	purchases,	buying	only	as	many	cups	of	sakau	as	necessary	to	get	the	warm,
sleepy,	feeling	that	the	drink	induces.	The	businesses	are	locally	referred	to	as	sakau	markets.	The	local	theory	is	that	the	further	one	travels	from	the	main	town	(and	thus	deeper	into	the	countryside	of	Pohnpei)	the	stronger	the	sakau	that	is	served.	If	this	is	the	case,	then	the	mean	number	of	cups	should	fall	with	distance	from	the	main	town	on	the
island.	The	following	table	uses	actual	data	collected	from	these	businesses,	the	names	of	the	businesses	have	been	changed.	Sakau	Marketdistance/km	(x)mean	cups	per	person	(y)	Upon	the	river	3.0	5.18	Try	me	first	13.5	3.93	At	the	bend	14.0	3.19	Falling	down	15.5	2.62	The	first	question	a	statistician	would	ask	is	whether	there	is	a	relationship
between	the	distance	and	mean	cup	data.	Determining	whether	there	is	a	relationship	is	best	seen	in	an	xy	scattergraph	of	the	data.	If	we	plot	the	points	on	an	xy	graph	using	a	spreadsheet,	the	y-values	can	be	seen	to	fall	with	increasing	x-value.	The	data	points,	while	not	all	exactly	on	one	line,	are	not	far	away	from	the	best	fit	line.	The	best	fit	line
indicates	a	negative	relationship.	The	larger	the	distance,	the	smaller	the	mean	number	of	cups	consumed.	We	use	a	number	called	the	Pearson	product-moment	correlation	coefficient	r	to	tell	us	how	well	the	data	fits	to	a	straight	line.	The	full	name	is	long,	in	statistics	this	number	is	called	simply	r.	R	can	be	calculated	using	a	spreadsheet	function.
The	function	for	calculating	r	is:	=CORREL(y-values,x-values)	Note	that	the	order	does	not	technically	matter.	The	correlation	of	x	to	y	is	the	same	as	that	of	y	to	x.	For	consistency	the	y-data,x-data	order	is	retained	above.	The	Pearson	product-moment	correlation	coefficient	r	(or	just	correlation	r)	values	that	result	from	the	formula	are	always
between	-1	and	1.	One	is	perfect	positive	linear	correlation.	Negative	one	is	perfect	negative	linear	correlation.	If	the	correlation	is	zero	or	close	to	zero:	no	linear	relationship	between	the	variables.	A	guideline	to	r	values:	Note	that	perfect	has	to	be	perfect:	0.99999	is	very	close,	but	not	perfect.	In	real	world	systems	perfect	correlation,	positive	or
negative,	is	rarely	or	never	seen.	A	correlation	of	0.0000	is	also	rare.	Systems	that	are	purely	random	are	also	rarely	seen	in	the	real	world.	Spreadsheets	usually	round	to	two	decimals	when	displaying	decimal	numbers.	A	correlation	r	of	0.999	is	displayed	as	"1"	by	spreadsheets.	Use	the	Format	menu	to	select	the	cells	item.	In	the	cells	dialog	box,
click	on	the	numbers	tab	to	increase	the	number	of	decimal	places.	When	the	correlation	is	not	perfect,	adjust	the	decimal	display	and	write	out	all	the	decimals.	The	correlation	r	of	−	0.93	is	a	strong	negative	correlation.	The	relationship	is	strong	and	the	relationship	is	negative.	The	equation	of	the	best	fit	line,	y	=	−0.18x	+	5.8	where	y	is	the	mean
number	of	cups	and	x	is	the	distance	from	the	main	town.	The	equations	that	generated	the	slope,	y-intercept,	and	correlation	can	be	seen	in	the	earlier	image.	The	strong	relationship	means	that	the	equation	can	be	used	to	predict	mean	cup	values,	at	least	for	distances	between	3.0	and	15.5	kilometers	from	town.	A	second	example	is	drawn	from
body	fat	data.	The	following	chart	plots	age	in	years	for	female	statistics	students	against	their	body	fat	index.	Is	there	a	relationship	seen	in	the	xy	scattergraph	between	the	age	of	a	female	statistics	student	and	the	body	fat	index?	Can	we	use	the	equation	to	predict	body	fat	index	on	age	alone?	If	we	plot	the	points	on	an	xy	graph	using	a
spreadsheet	as	seen	above,	the	data	does	not	appear	to	be	linear.	The	data	points	do	not	form	a	discernable	pattern.	The	data	appears	to	be	scattered	randomly	about	the	graph.	Although	a	spreadsheet	is	able	to	give	us	a	best	fit	line	(a	linear	regression	or	least	squares	line),	that	equation	will	not	be	useful	for	predicting	body	fat	index	based	on	age.
In	the	example	above	the	correlation	r	can	be	calculated	and	is	found	to	be	0.06.	Zero	would	be	random	correlation.	This	value	is	so	close	to	zero	that	the	correlation	is	effectively	random.	The	relationship	is	random.	There	is	no	relationship.	The	linear	equation	cannot	be	used	to	predict	the	body	fat	index	given	the	age.	Limitations	of	linear
regressions	We	cannot	usually	predict	values	that	are	below	the	minimum	x	or	above	the	maximum	x	values	and	make	meaningful	predictions.	In	the	example	of	the	runner,	we	could	calculate	how	far	the	runner	would	run	in	72	hours	(three	days	and	three	nights)	but	it	is	unlikely	the	runner	could	run	continuously	for	that	length	of	time.	For	some
systems	values	can	be	predicted	below	the	minimum	x	or	above	the	maximum	x	value.	When	we	do	this	it	is	called	extrapolation.	Very	few	systems	can	be	extrapolated,	but	some	systems	remain	linear	for	values	near	to	the	provided	x	values.	Image	credit:	xkcd	under	a	Creative	Commons	Attribution-NonCommercial	2.5	license.	Some	rights	reserved.
Coefficient	of	Determination	r²	The	coefficient	of	determination,	r²,	is	a	measure	of	how	much	of	the	variation	in	the	independent	x	variable	explains	the	variation	in	the	dependent	y	variable.	This	does	NOT	imply	causation.	In	spreadsheets	the	^	symbol	(shift-6)	is	exponentiation.	In	spreadsheets	we	can	square	the	correlation	with	the	following
formula:	=(CORREL(y-values,x-values))^2	The	result,	which	is	between	0	and	1	inclusive,	is	often	expressed	as	a	percentage.	Imagine	a	Yamaha	outboard	motor	fishing	boat	sitting	out	beyond	the	reef	in	an	open	ocean	swell.	The	swell	moves	the	boat	gently	up	and	down.	Now	suppose	there	is	a	small	boy	moving	around	in	the	boat.	The	boat	is	rocked
and	swayed	by	the	boy.	The	total	motion	of	the	boat	is	in	part	due	to	the	swell	and	in	part	due	to	the	boy.	Maybe	the	swell	accounts	for	70%	of	the	boat's	motion	while	the	boy	accounts	for	30%	of	the	motion.	A	model	of	the	boat's	motion	that	took	into	account	only	the	motion	of	the	ocean	would	generate	a	coefficient	of	determination	of	about	70%.
Causality	Finding	that	a	correlation	exists	does	not	mean	that	the	x-values	cause	the	y-values.	A	line	does	not	imply	causation:	Your	age	does	not	cause	your	pounds	of	body	fat,	nor	does	time	cause	distance	for	the	runner.	Studies	in	the	mid	1800s	of	Micronesia	would	have	shown	of	increase	each	year	in	church	attendance	and	sexually	transmitted
diseases	(STDs).	That	does	NOT	mean	churches	cause	STDs!	What	the	data	is	revealing	is	a	common	variable	underlying	our	data:	foreigners	brought	both	STDs	and	churches.	Any	correlation	is	simply	the	result	of	the	common	impact	of	the	increasing	influence	of	foreigners.	Calculator	usage	notes	Some	calculators	will	generate	a	best	fit	line.	Be
careful.	In	algebra	straight	lines	had	the	form	y	=	mx	+	b	where	m	was	the	slope	and	b	was	the	y-intercept.	In	statistics	lines	are	described	using	the	equation	y	=	a	+	bx.	Thus	b	is	the	slope!	And	a	is	the	y-intercept!	You	would	not	need	to	know	this	but	your	calculator	will	likely	use	b	for	the	slope	and	a	for	the	y-intercept.	The	exception	is	some	TI
calculators	that	use	SLP	and	INT	for	slope	and	intercept	respectively.	Physical	science	note	Note	only	for	those	in	physical	science	courses.	In	some	physical	systems	the	data	point	(0,0)	is	the	most	accurately	known	measurement	in	a	system.	In	this	situation	the	physicist	may	choose	to	force	the	linear	regression	through	the	origin	at	(0,0).	This	forces
the	line	to	have	an	intercept	of	zero.	There	is	another	function	in	spreadsheets	which	can	force	the	intercept	to	be	zero,	the	LINear	ESTimator	function.	The	following	functions	use	time	versus	distance,	common	x	and	y	values	in	physical	science.	=LINEST(distance	(y)	values,time	(x)	values,0)	Note	that	the	same	as	the	slope	and	intercept	functions,
the	y-values	are	entered	first,	the	x-values	are	entered	second.	A	probability	is	the	likelihood	of	an	event	or	outcome.	Probabilities	are	specified	mathematically	by	a	number	between	0	and	1	including	0	or	1.	0	is	no	likelihood	an	event	will	occur.	1	is	absolute	certainty	an	event	will	occur.	0.5	is	an	equal	likelihood	of	occurrence	or	non-occurrence.	Any



value	between	0	and	1	can	occur.	We	use	the	notation	P(eventLabel)	=	probability	to	report	a	probability.	There	are	three	ways	to	assign	probabilities.	Intuition	or	subjective	estimate	Equally	likely	outcomes	Relative	Frequencies	Intuition	Intuition/subjective	measure.	An	educated	best	guess.	Using	available	information	to	make	a	best	estimate	of	a
probability.	Could	be	anything	from	a	wild	guess	to	an	educated	and	informed	estimate	by	experts	in	the	field.	Equally	Likely	Events	or	Outcomes	Equally	Likely	Events:	Probabilities	from	mathematical	formulas	In	the	following	the	word	"event"	and	the	word	"outcome"	are	taken	to	have	the	same	meaning.	Probabilities	versus	Statistics	The	study	of
problems	with	equally	likely	outcomes	is	termed	the	study	of	probabilities.	This	is	the	realm	of	the	mathematics	of	probability.	Using	the	mathematics	of	probability,	the	outcomes	can	be	determined	ahead	of	time.	Mathematical	formulas	determine	the	probability	of	a	particular	outcome.	All	measures	are	population	parameters.	The	mathematics	of
probability	determines	the	probabilities	for	coin	tosses,	dice,	cards,	lotteries,	bingo,	and	other	games	of	chance.	This	course	focuses	not	on	probability	but	rather	on	statistics.	In	statistics,	measurement	are	made	on	a	sample	taken	from	the	population	and	used	to	estimate	the	population's	parameters.	All	possible	outcomes	are	not	usually	known.	is
usually	not	known	and	might	not	be	knowable.	Relative	frequencies	will	be	used	to	estimate	population	parameters.	Calculating	Probabilities	Where	each	and	every	event	is	equally	likely,	the	probability	of	an	event	occurring	can	be	determined	from	probability	=	ways	to	get	the	desired	event/total	possible	events	or	probability	=	ways	to	get	the
particular	outcome/total	possible	outcomes	Dice	and	Coins	Binary	probabilities:	yes	or	no,	up	or	down,	heads	or	tails	A	penny	P(head	on	a	penny)	=	one	way	to	get	a	head/two	sides	=	1/2	=	0.5	or	50%	That	probability,	0.5,	is	the	probability	of	getting	a	heads	or	tails	prior	to	the	toss.	Once	the	toss	is	done,	the	coin	is	either	a	head	or	a	tail,	1	or	0,	all	or
nothing.	There	is	no	0.5	probability	anymore.	Over	any	ten	tosses	there	is	no	guarantee	of	five	heads	and	five	tails:	probability	does	not	work	like	that.	Over	any	small	sample	the	ratios	of	expected	outcomes	can	differ	from	the	mathematically	calculated	ratios.	Over	thousands	of	tosses,	however,	the	ratio	of	outcomes	such	as	the	number	of	heads	to
the	number	of	tails,	will	approach	the	mathematically	predicted	amount.	We	refer	to	this	as	the	law	of	large	numbers.	In	effect,	a	few	tosses	is	a	sample	from	a	population	that	consists,	theoretically,	of	an	infinite	number	of	tosses.	Thus	we	can	speak	about	a	population	mean	μ	for	an	infinite	number	of	tosses.	That	population	mean	μ	is	the
mathematically	predicted	probability.	Population	mean	μ	=	(number	of	ways	to	get	a	desired	outcome)/(total	possible	outcomes)	Dice:	Six-sided	A	six-sided	die.	Six	sides.	Each	side	equally	likely	to	appear.	Six	total	possible	outcomes.	Only	one	way	to	roll	a	one:	the	side	with	a	single	pip	must	face	up.	1	way	to	get	a	one/6	possible	outcomes	=	0.1667	or
17%	P(1)	=	0.17	Dice:	Four,	eight,	twelve,	and	twenty	sided	The	formula	remains	the	same:	the	number	of	possible	ways	to	get	a	particular	roll	divided	by	the	number	of	possible	outcomes	(that	is,	the	number	of	sides!).	Think	about	this:	what	would	a	three	sided	die	look	like?	How	about	a	two-sided	die?	What	about	a	one	sided	die?	What	shape	would
that	be?	Is	there	such	a	thing?	Two	dice	Ways	to	get	a	five	on	two	dice:	1	+	4	=	5,	2	+	3	=	5,	3	+	2	=	5,	4	+	1	=	5	(each	die	is	unique).	Four	ways	to	get/36	total	possibilities	=	4/36	=	0.11	or	11%	Homework:	What	is	the	probability	of	rolling	a	three	on...	A	four	sided	die?	A	six	sided	die?	An	eight	sided	die?	A	twelve	sided	die?	A	twenty	sided	die
labeled	0-9	twice.	What	is	the	probability	of	throwing	two	pennies	and	having	both	come	up	heads?	5.2	Sample	space	The	sample	space	set	of	all	possible	outcomes	in	an	experiment	or	system.	Bear	in	mind	that	the	following	is	an	oversimplification	of	the	complex	biogenetics	of	achromatopsia	for	the	sake	of	a	statistics	example.	Achromatopsia	is
controlled	by	a	pair	of	genes,	one	from	the	mother	and	one	from	the	father.	A	child	is	born	an	achromat	when	the	child	inherits	a	recessive	gene	from	both	the	mother	and	father.	A	is	the	dominant	gene	a	is	the	recessive	gene	A	person	with	the	combination	AA	is	"double	dominant"	and	has	"normal"	vision.	A	person	with	the	combination	Aa	is	termed	a
carrier	and	has	"normal"	vision.	A	person	with	the	combination	aa	has	achromatopsia.	Suppose	two	carriers,	Aa,	marry	and	have	children.	The	sample	space	for	this	situation	is	as	follows:	mother	father\Aa	AAAAa	aAaaa	The	above	diagram	of	all	four	possible	outcomes	represents	the	sample	space	for	this	exercise.	Note	that	for	each	and	every	child
there	is	only	one	possible	outcome.	The	outcomes	are	said	to	be	mutually	exclusive	and	independent.	Each	outcome	is	as	likely	as	any	other	individual	outcome.	All	possible	outcomes	can	be	calculated.	the	sample	space	is	completely	known.	Therefore	the	above	involves	probability	and	not	statistics.	The	probability	of	these	two	parents	bearing	a	child
with	achromatopsia	is:	P(achromat)	=	one	way	for	the	child	to	inherit	aa/four	possible	combinations	=	1/4	=	0.25	or	25%	This	does	NOT	mean	one	in	every	four	children	will	necessarily	be	an	achromat.	Suppose	they	have	eight	children.	While	it	could	turn	out	that	exactly	two	children	(25%)	would	have	achromatopsia,	other	likely	results	are	a	single
child	with	achromatopsia	or	three	children	with	achromatopsia.	Less	likely,	but	possible,	would	be	results	of	no	achromat	children	or	four	achromat	children.	If	we	decide	to	work	from	actual	results	and	build	a	frequency	table,	then	we	would	be	dealing	with	statistics.	The	probability	of	bearing	a	carrier	is:	P(carrier)	=	two	ways	for	the	child	to	inherit
Aa/four	possible	combinations	=	2/4	=	0.50	Note	that	while	each	outcome	is	equally	likely,	there	are	TWO	ways	to	get	a	carrier,	which	results	in	a	50%	probability	of	a	child	being	a	carrier.	At	your	desk:	mate	an	achromat	aa	father	and	carrier	mother	Aa.	What	is	the	probability	a	child	will	be	born	an	achromat?	P(achromat)	=	________	What	is	the
probability	a	child	will	be	born	with	"normal"	vision?	P("normal")	=	______	Homework:	Mate	a	AA	father	and	an	achromat	aa	mother.	What	is	the	probability	a	child	will	be	born	an	achromat?	P(achromat)	=	________	What	is	the	probability	a	child	will	be	born	with	"normal"	vision?	P("normal")	=	______	See:	for	more	information	on	achromatopsia.
Genetically	linked	schizophrenia	is	another	genetic	example:	Mol	Psychiatry.	2003	Jul;8(7):695-705,	643.	Genome-wide	scan	in	a	large	complex	pedigree	with	predominantly	male	schizophrenics	from	the	island	of	Kosrae:	evidence	for	linkage	to	chromosome	2q.	Wijsman	EM,	Rosenthal	EA,	Hall	D,	Blundell	ML,	Sobin	C,	Heath	SC,	Williams	R,
Brownstein	MJ,	Gogos	JA,	Karayiorgou	M.	Division	of	Medical	Genetics,	Department	of	Medicine,	University	of	Washington,	Seattle,	WA,	USA.	It	is	widely	accepted	that	founder	populations	hold	promise	for	mapping	loci	for	complex	traits.	However,	the	outcome	of	these	mapping	efforts	will	most	likely	depend	on	the	individual	demographic
characteristics	and	historical	circumstances	surrounding	the	founding	of	a	given	genetic	isolate.	The	'ideal'	features	of	a	founder	population	are	currently	unknown.	The	Micronesian	islandic	population	of	Kosrae,	one	of	the	four	islands	comprising	the	Federated	States	of	Micronesia	(FSM),	was	founded	by	a	small	number	of	settlers	and	went	through
a	secondary	genetic	'bottleneck'	in	the	mid-19th	century.	The	potential	for	reduced	etiological	(genetic	and	environmental)	heterogeneity,	as	well	as	the	opportunity	to	ascertain	extended	and	statistically	powerful	pedigrees	makes	the	Kosraean	population	attractive	for	mapping	schizophrenia	susceptibility	genes.	Our	exhaustive	case	ascertainment
from	this	islandic	population	identified	32	patients	who	met	DSM-IV	criteria	for	schizophrenia	or	schizoaffective	disorder.	Three	of	these	were	siblings	in	one	nuclear	family,	and	27	were	from	a	single	large	and	complex	schizophrenia	kindred	that	includes	a	total	of	251	individuals.	One	of	the	most	startling	findings	in	our	ascertained	sample	was	the
great	difference	in	male	and	female	disease	rates.	A	genome-wide	scan	provided	initial	suggestive	evidence	for	linkage	to	markers	on	chromosomes	1,	2,	3,	7,	13,	15,	19,	and	X.	Follow-up	multipoint	analyses	gave	additional	support	for	a	region	on	2q37	that	includes	a	schizophrenia	locus	previously	identified	in	another	small	genetic	isolate,	with	a
well-established	recent	genealogical	history	and	a	small	number	of	founders,	located	on	the	eastern	border	of	Finland.	In	addition	to	providing	further	support	for	a	schizophrenia	susceptibility	locus	at	2q37,	our	results	highlight	the	analytic	challenges	associated	with	extremely	large	and	complex	pedigrees,	as	well	as	the	limitations	associated	with
genetic	studies	of	complex	traits	in	small	islandic	populations.	PMID:	12874606	[PubMed	-	indexed	for	MEDLINE]	The	above	article	is	both	fascinating	and,	at	the	same	time,	calls	into	question	privacy	issues.	On	the	small	island	of	Kosrae	"three	siblings	from	one	nuclear	family"	are	identifiable	people.	5.3	Relative	Frequency	The	third	way	to	assign
probabilities	is	from	relative	frequencies.	Each	relative	frequency	represents	a	probability	of	that	event	occurring	for	that	sample	space.	Body	fat	percentage	data	was	gathered	from	58	females	here	at	the	College	since	summer	2001.	The	data	had	the	following	characteristics:	count59	mean28.7	sx7.1	min15.6	max50.1	A	five	class	frequency	and
relative	frequency	table	has	the	following	results:	BFI	=	Body	Fat	Index	(percentage*100)	CLL	=	Class	(bin)	Lower	Limit	CUL	=	Class	(bin)	Upper	Limit	(Excel	uses)	Note	that	the	classes	are	not	equal	width	in	this	example.	Medical	CategoryBFI	fem	CULx	FrequencyfRelative	Frequencyf/n	or	P(x)	Athletically	fit*2030.05	Physically	fit24150.25
Acceptable31240.41	Borderline	obese	(overfat)39120.20	Medically	obese5150.08	Sample	size	n:591.00	*	body	fat	percentage	category	This	means	there	is	a...	0.05	(five	percent)	probability	of	a	female	student	in	the	sample	having	a	body	fat	percentage	between	12	and	20	(athletically	fit)	0.25	(25%)	probability	of	a	female	student	in	the	sample	has
body	fat	percentage	between	20.1	(the	Tanita	unit	only	measured	to	the	nearest	tenth)	and	24	(physically	fit)	0.41	(41%)	probability	of	a	female	student	in	the	sample	has	body	fat	percentage	between	24.1	and	31	(acceptable	but	not	fit	level	of	fat)	0.20	(20%)	probability	of	a	female	student	in	the	sample	has	body	fat	percentage	between	31.1	and	39
(on	the	borderline	between	acceptable	and	obese)	0.08	(8%)	probability	of	a	female	student	in	the	sample	has	body	fat	percentage	between	39.1	and	51	(medically	obese)	The	most	probable	result	(most	likely)	is	a	body	fat	measurement	between	24.1	and	31	with	a	41%	probability	of	a	student	being	in	each	of	either	of	these	intervals.	Remember	that...
The	sum	of	the	frequencies	is	the	sample	size.	The	sum	of	the	relative	frequencies	is	always	one:	probabilities	add	to	one,	which	is	also	100%.	The	sum	of	the	frequencies	being	the	sample	size	and	the	sum	of	the	relative	frequencies	were	ways	to	check	the	accuracy	of	the	frequency	table.	The	same	table,	but	for	male	students:	Medical	CategoryBFI
male	CUL	x	Frequency	f	Relative	Frequency	f/n	or	P(x)	Athletically	fit*	13	9	0.18	Physically	fit	17	11	0.22	Acceptable	20	10	0.20	Borderline	obese	(overfat)	25	9	0.18	Medically	obese	50	12	0.24	Sample	size	n:	51	1.00	The	male	students	have	a	higher	probability	of	being	obese	than	the	female	students!	Kosraeans	abroad:	Another	example	What	is	the
probability	that	a	Kosraean	lives	outside	of	Kosrae?	An	informal	survey	done	on	the	25th	of	December	2007	produced	the	following	data.	The	table	also	includes	data	gathered	Christmas	2003.	Kosraean	population	estimates	Location2003	Conservative2003	Possible2007Growth	Ebeye--30-	Guam20030030050%	Honolulu6001000100067%
Kona200200800300%	Maui10010060-40%	Pohnpei20020030050%	Seattle200200600200%	Texas200200N/A-	Virgina	Beach200200N/A-	USA	Other-200N/A-	Diaspora	sums:170024003090	-	Kosrae766376638183-	Est.	Total	Pop.:93631006311273-	Percentage	abroad:18.2%23.8%27%48%	The	relative	frequency	of	27%	is	a	point	estimate	for	the
probability	that	a	Kosraean	lives	outside	of	Kosrae.	Law	of	Large	Numbers	For	relative	frequency	probability	calculations,	as	the	sample	size	increases	the	probabilities	get	closer	and	closer	to	the	true	population	parameter	(the	actual	probability	for	the	population).	Bigger	samples	are	more	accurate.	Probabilities	can	add.	The	probability	that	a
female	student	is	either	athletically	fit,	physically	fit,	acceptable,	or	borderline	can	be	calculated	by	adding	the	probabilities	P(females	students	are	athletically	fit	OR	physically	fit	OR	acceptable	OR	borderline)	=	0.05	+	0.25	+	0.41	+	0.20	=	0.91	Note	that	each	student	has	one	and	only	one	body	fat	measurement,	the	outcomes	are	independent	and
mutually	exclusive.	When	the	outcomes	are	independent	the	probabilities	add	when	the	word	OR	is	used.	P(A	or	B)	=	P(A)	+	P(B)	And	For	mutually	exclusive	and	independent	events,	the	probability	that	event	A	and	event	B	will	occur	is	calculated	by	multiplying	the	individual	probabilities.	However,	this	has	no	clear	meaning	in	the	above	context.	A
student	cannot	be	athletically	fit	and	medically	obese	at	the	same	time.	Complement	of	an	Event	(not	compliment!)	The	complement	of	an	event	is	the	probability	that	the	event	will	not	occur.	Since	all	probabilities	add	to	one,	the	complement	can	be	calculated	from	1	-	P(x).	The	complement	is	sometimes	written	P(NOT	event).	In	the	foregoing
example	we	calculated	P(Not	medically	obese)	=	0.91	Non-mutually	exclusive	outcomes/dependent	outcomes	Consider	the	following	table	of	unofficial	results	from	the	summer	2000	senatorial	election	in	Kitti	and	Madolenihmw.	Candidates	from	both	Kitti	and	Madolenihmw	ran	for	office.	One	Kitti	candidate	as	advised	that	he	was	spending	too	much
time	in	Madolenihmw,	that	he	would	not	draw	a	lot	of	votes	from	Madolenihmw.	To	what	extent,	if	any,	is	this	true?	Can	we	determine	the	"loyalty"	of	the	voters	and	make	a	determination	as	to	whether	campaigning	outside	one's	home	municipality	matters?	K	M	M	K	M	K	K	M	M	DEdwa	BEtse	BHelg	OILawr	DGNeth	STSalv	HSeme	JThom	BWeit	Sums
Kitti	243	85	167	1003	185	173	902	14	59	2831	Mad	13	702	582	129	711	48	176	25	158	2544	Sums:	256	787	749	1132	896	221	1078	39	217	5375	From	the	above	raw	data	we	can	construct	a	two	way	table	of	results.	This	type	of	table	is	referred	to	as	a	pivot	table	or	cross-tabulation.					Voter	Residency			Candidate	residency			K	Kitti	M	Mad	Sums	W
Kitti	2321	366	2687	E	Mad	510	2178	2688			Sums	2831	2544	5375	Basic	statistical	probabilities	from	the	above	table	What	percentage	of	voters	reside	in	Kitti?	P(Residency	of	voter	is	Kitti	K)	=	P(K)	=	2831/5375	=	0.53	=	53%	What	percentage	of	voters	reside	in	Madolenihmw?	P(Residency	of	voter	is	Madolenihmw	M)	=	P(M)	=	2544/5375	=	.047	-
47%	What	percentage	of	all	votes	did	Kitti	candidates	receive?	P(W)	=	2687/5375	=	.4999	=	49.99%	Try	the	following	at	your	desk:	What	percentage	of	all	votes	did	Madolenihmw	candidates	receive?	P(E)	=	2688/5375	=	0.5001	=	50.01%	And	What	percentage	of	the	total	vote	is	represented	by	Kitti	residents	voting	for	Kitti	candidate?	For	AND	look
at	the	INTERSECTION	and	use	the	number	in	the	intersection.	P(K	and	W)	=	2321/5375	=	0.43	=	43%	Find	P(K	and	E),	the	percentage	of	the	total	vote	represented	by	Kitti	residents	voting	for	Madolenihmw	candidates.	P(K	and	E)	=	510/5375	=	0.09	=	9%	Try	the	following	at	your	desk:	Find	P(M	and	W),	the	percentage	of	the	total	vote	represented
by	Madolenihmw	residents	voting	for	Kitti	candidates.	P(M	and	W)	=	366/5375	=	0.07	=	7%	Or	Find	P(K	or	W),	the	percentage	of	the	total	vote	represented	by	all	Kitti	residents	and	all	voters	who	voted	for	a	Kitti	candidate.	This	one	is	easiest	if	done	by	looking	at	the	table.	The	three	cells	that	have	to	be	added	are	2321	+	510	+	366.	This	total	has	to
then	be	divided	by	the	total,	5375.	(2321	+	510	+	366)/5375	=	0.59	=	59%	This	can	also	be	calculated	from	the	following	formula:	P(A)	or	P(B)	=	P(A)	+	P(B)	-	P(A	or	B)	P(K	or	W)	=	P(K)	+	P(W)	-	P(K	and	W)	2831/5375	+	2687/5375	-	2321/5375	=	0.5267	+	0.4999	-	0.4318	=	0.59	=	59%	Try	the	following	at	your	desk:	Find	P(K	or	E),	the	percentage	of
the	total	vote	represented	by	all	Kitti	residents	and	all	voters	who	voted	for	a	Madolenihmw	candidate.	(2321	+	510	+	2178)/5375	=	0.93	Conditional	Probability	In	conditional	probability	a	specified	event	has	already	occurred	that	affects	the	remaining	statistical	probability	calculations.	Suppose	I	want	to	only	look	at	how	the	Kitti	residents	voted,
excluding	consideration	of	the	Madolenihmw	voters.	I	might	be	asking,	"What	percentage	of	Kitti	residents	(not	of	the	whole	vote)	voted	for	Kitti	candidates?"	We	write	this	in	the	following	way:	P(W,	given	K)	=	2321/2831	=	0.82	=	82%	Think	of	the	above	this	way:	put	your	hand	over	all	the	Madolenihmw	data	and	then	run	your	calculations.	"K"	has
occurred,	so	we	can	forget	about	the	"M"	column	and	the	sums.	The	82	percent	represents,	for	lack	of	a	better	term,	a	"Kitti	loyalty	factor."	In	Kitti,	82	out	of	100	hundred	residents	will	vote	for	the	home	municipality	candidate,	or	about	4	out	of	5	people.	Try	this	at	your	desk:	Find	the	"Madolenihmw	loyalty	factor"	P(E,	given	M):	2178/2544	=	0.86
That	is	86	out	of	100	residents	will	vote	for	the	home	municipality	candidate	in	Madolenihmw.	"Cross-over"	voting	Find	the	percentage	of	Kitti	voters	who	voted	"Madolenihmw"	as	a	percentage	of	all	Kitti	voters:	P(E,	given	K)	=	510/2831	=	0.18	=	18%	Call	this	the	"Kitti	cross-over	factor."	18%	of	Kitti	residents	will	tend	to	cross	over	and	vote	outside
their	municipality.	Find	the	percentage	of	Madolenihmw	voters	who	voted	"Kitti"	as	a	percentage	of	all	Madolenihmw	voters:	P(W,	given	M)	=	366/2544	=	0.14	=	14%	A	campaign	statistician	for	a	Kitti	candidate	might	make	the	following	line	of	reasoning.	Only	one	in	seven	(~14%)	Madolenihmw	residents	is	likely	to	vote	Kitti.	In	some	sense,	an
argument	could	be	made	for	a	Kitti	candidate	not	spending	more	than	one	in	seven	days	campaigning	in	Madolenihmw.	On	the	other	hand,	one	in	every	five	Kitti	residents	is	likely	to	vote	Madolenihmw.	A	campaign	statistician	for	a	Madolenihmw	candidate	might	reasonably	recommend	spending	one	in	every	five	days	over	in	Kitti	to	capitalize	on	the
cross-over	effect.	Another	example	of	dependent	events.	Favorite	Meat/Favorite	Sport	Fish	Chicken	Dog	Sums	Volleyball	FFF	F	4	Basketball	MM	M	MM	5	Baseball	MM	M	3	Hockey	M	1	American	Football	F	1	Pool	M	1	Swimming	M	1	Sums:	12	2	4	18	Mathematically	equally	likely	outcomes	usually	produce	symmetric	distributions.	Simple	probabilities
of	a	single	coin	or	single	die	are	uniform	in	their	shape.	The	probabilities	of	multiple	coins	or	dice	form	a	symmetric	heap	that	is	called	a	binomial	distribution.	As	the	number	of	dice	and	pennies	increase,	the	distribution	approaches	a	shape	we	will	later	learn	to	call	the	"normal"	distribution.	Distributions	based	on	relative	frequencies	can	have	a
variety	of	shapes,	symmetrical	or	non-symmetrical.	The	shape	of	the	distribution	of	a	sample	is	often	reflective	of	the	shape	of	the	distribution	of	a	population.	If	the	sample	is	a	good,	random	sample,	then	the	shape	of	the	sample	distribution	is	a	good	predictor	of	the	shape	of	the	population	distribution.	Probability	Distributions	A	probability
distribution	usually	refers	to	a	relative	frequency	histogram	drawn	as	a	line	chart.	Both	discrete	and	continuous	variables	can	have	a	probability	distribution.	Classes	(or	bins	or	intervals)	can	be	constructed,	relative	frequencies	(or	probabilities)	can	be	calculated	and	a	relative	frequency	histogram	can	be	drawn.	If	the	data	is	continuous,	then	a	mean
can	be	calculated	for	the	data	from	the	original	data.	There	is	also	a	way	to	recover	the	mean	from	the	class	values	and	the	probabilities,	although	this	depends	on	the	class	values	being	treated	as	being	a	part	of	a	continuous	distribution.	In	later	chapters	the	columns	of	the	histogram	chart	will	be	replaced	by	a	line,	specifically	a	"heap"	or	"mound"
shaped	line.	The	diagrams	further	below	show	how	one	might	move	from	a	column	chart	representation	of	data	to	a	line	chart	representation.	The	following	data	consists	of	39	body	fat	measurements	for	female	students	at	the	College	of	Micronesia-FSM	Summer	2001	and	Fall	2001.	Following	the	table	is	a	relative	frequency	histogram,	the
probability	distribution	for	this	data.	BFI	fem	CUL	x	Frequency	f	Relative	Frequency	f/n	or	P(x)	20.120.05	24.6120.31	29.2130.33	33.750.13	38.170.18	Sum	(n):391.00	The	area	under	the	bars	is	equal	to	one,	the	sum	of	the	relative	frequencies.	The	above	diagram	consists	of	five	discrete	classes.	Later	we	will	look	at	continuous	probability
distributions	using	lines	to	depict	the	probability	distribution.	Imagine	a	line	connecting	the	tops	of	the	columns:	If	the	columns	are	removed	and	the	class	upper	limits	are	shifted	to	where	the	right	side	of	each	column	used	to	be:	The	orange	vertical	line	has	been	drawn	at	the	value	of	the	mean.	This	line	splits	the	area	under	the	"curve"	in	half.	Half
of	the	females	have	a	body	fat	measurement	less	than	this	value,	half	have	a	body	fat	measurement	greater	than	this	value.	We	could	also	draw	a	vertical	line	that	splits	the	area	under	the	curve	such	that	we	have	ten	percent	of	the	area	to	the	left	of	the	orange	line	and	ninety	percent	to	the	right	of	the	orange	line.	This	line	would	be	at	the	value	below
which	only	ten	percent	of	the	measurements	occur.	6.2	Calculations	of	the	mean	and	the	standard	deviation	In	some	situations	we	have	only	the	intervals	and	the	frequencies	but	we	do	not	have	the	original	data.	In	these	situations	it	would	be	useful	to	still	be	able	to	calculate	a	mean	and	a	standard	deviation	for	our	data.	If	we	only	have	the	intervals
and	frequencies,	then	we	can	calculate	both	the	mean	and	the	standard	deviation	from	the	class	upper	limits	and	the	relative	frequencies.	Here	is	the	mean	and	standard	deviation	for	the	sample	of	39	female	students:	BFI	fem	CUL	x	Frequency	f	Relative	Frequency	f/n	or	P(x)	Mean	μ:	∑(x*P(x))	stdev	σ:	√(∑((x-μ)ҪP(x)))	20.120.051.034.52
24.6120.317.587.29	29.2130.339.720.04	33.750.134.322.23	38.170.186.8613.56	Sum:391.00μ	=	29.51	∑	=	27.64	σ	=	5.26	A	spreadsheet	with	the	above	data	is	available.	Note	that	the	results	are	not	exactly	the	same	as	those	attained	by	analyzing	the	data	directly.	Where	we	can,	we	will	analyze	the	original	data.	This	is	not	always	possible.	The
following	table	was	taken	from	the	1994	FSM	census.	Here	the	data	has	already	been	tallied	into	intervals,	we	do	not	have	access	to	the	original	data.	Even	if	we	did,	it	would	be	102,724	rows,	too	many	for	some	of	the	computers	on	campus.	Age	x	Total	f	Relative	frequency	f/n	or	P(x)	x*P(x)	(x-μ)²*P(x)	4146620.140.5757.78	9150900.151.3233.58
14149440.152.0414.90	19124250.122.303.17	2491920.092.150.00	2970420.071.991.63	3468000.072.256.46	3959980.062.2812.93	4431310.031.3412.05	4936010.041.7221.70	5422710.021.1919.74	5920890.021.2024.74	6419780.021.2330.62	6913080.010.8825.65	7411690.010.8428.31	795440.010.4215.95	843130.000.2610.93	89990.000.094.06
94560.000.052.66	98120.000.010.64	Sums:102724124.12	327.50	sqrt:	18.10	The	mean	μ	=	24.12	The	population	standard	deviation	σ	=	18.10	A	spreadsheet	with	the	above	data	is	available.	The	result	is	an	average	age	of	24.12	years	for	a	resident	of	the	FSM	in	1994	and	a	standard	deviation	of	18.10	years.	This	means	at	least	half	the	population	of
the	nation	is	under	24.12	years	old!	Actually,	due	to	the	skew	in	the	distribution,	fully	56%	of	the	nation	is	under	19.	Bear	in	mind	that	56%	is	in	school.	That	means	we	will	need	new	jobs	for	that	56%	as	they	mature	and	enter	the	workplace.	On	the	order	of	57,121	new	jobs.	How	old	are	you?	Below,	at,	or	above	the	mean	(average)?	Do	you	have	a
job?	Note	we	used	the	class	upper	limits	to	calculate	the	average	age.	Potentially	this	inflates	the	national	average	by	as	much	as	half	a	class	width	or	2.5	years.	Taking	this	into	account	would	yield	an	average	age	of	21.62	years	old.	There	is	one	more	small	complication	to	consider.	Since	the	population	of	the	FSM	is	growing,	the	number	of	people	at
each	age	in	years	is	different	across	the	five	year	span	of	the	class.	The	age	groups	at	the	bottom	of	the	class	(near	the	class	lower	limit)	are	going	to	be	bigger	than	the	age	groups	at	the	top	of	the	class	(near	the	class	upper	limit).	This	would	act	to	further	reduce	the	average	age.	Homework:	Use	the	2000	Census	data	to	calculate	the	mean	age	in	the
FSM	in	2000.	Age2000	414782	914168	1414213	1913230	249527	297620	346480	396016	445560	494650	543205	591903	641733	691487	74993	791441	Did	the	mean	age	change?	Are	you	still	(below|at|above)	the	mean	age?	Alternate	Homework:	Use	the	following	data	to	calculate	the	overall	grade	point	average	and	standard	deviation	of	the	grade
point	data	for	the	Pohnpeian	students	at	the	national	campus	during	the	terms	Fall	2000	and	Spring	2001	Grade	Point	Value	x	Frequency	f	Relative	Frequency	f/n	or	P(x)	Mean:	∑(x*P(x))	stdev:	√(∑((x-μ)ҪP(x)))	4851__________________	31120__________________	21023__________________	1459__________________	0690__________________	Sums:
________________________	Sqrt:______	Inferential	statistics	is	all	about	measuring	a	sample	and	then	using	those	values	to	predict	the	values	for	a	population.	The	measurements	of	the	sample	are	called	statistics,	the	measurements	of	the	population	are	called	parameters.	Some	sample	statistics	are	good	predictors	of	their	corresponding	population
parameter.	Other	sample	statistics	are	not	able	to	predict	their	population	parameter.	The	sample	must	be	a	good,	representative	sample	of	the	population.	If	the	sample	is	not	properly	chosen,	then	no	predictions	can	be	made.	X	X	Sample	Sample	size	n	Sample	mode	Sample	median	Sample	mean	Sample	standard	dev	sx	Sample	distribution	shape
Population	population	size	N	population	mode	population	median	population	mean	population	standard	deviation	population	distribution	shape	id:071venn	The	sample	size	will	always	be	smaller	than	the	population.	The	population	size	N	cannot	be	predicted	from	the	sample	size	n.	The	sample	mode	is	not	usually	the	same	as	the	population	mode.	The
sample	median	can	predict	the	population	median.	This	text	does	not	further	explore	inference	of	population	medians	from	sample	medians.	If	a	sample	is	normally	distributed,	then	the	sample	mean	is	a	more	efficient	estimator	of	the	population	mean	than	the	median.	The	sample	mean	for	a	good,	random	sample,	is	a	reasonable	point	estimate	of	the
population	mean	μ.	The	sample	standard	deviation	sx	predicts	the	population	standard	deviation	σ.	The	shape	of	the	distribution	of	the	sample	is	a	good	predictor	of	the	shape	of	the	distribution	of	the	population.	That	the	shape	of	the	population	distribution	can	be	predicted	by	the	shape	of	the	distribution	of	a	good	random	sample	is	important.	Later
in	the	course	we	will	be	predicting	the	population	mean	μ.	Instead	of	predicting	a	single	value	we	will	predict	a	range	in	which	the	population	mean	will	likely	be	found.	Consider	as	an	example	the	following	question,	"How	long	does	it	take	to	drive	from	Kolonia	to	the	national	campus	on	Pohnpei?"	A	typical	answer	would	be	"Ten	to	twenty	minutes."
Everyone	knows	that	the	time	varies,	so	a	range	is	quoted.	The	average	time	to	drive	to	the	national	campus	is	somewhere	in	that	range.	Determining	the	appropriate	range	in	which	a	population	mean	will	be	found	depends	on	the	shape	of	the	distribution.	A	bimodal	distribution	is	likely	to	need	a	larger	range	than	a	symmetrical	bell	shaped
distribution	in	order	to	be	sure	to	capture	the	population	mean.	As	a	result	of	the	above,	we	need	to	understand	the	shape	of	distributions	generated	by	different	systems.	The	most	important	shape	in	statistics	is	the	shape	of	a	purely	random	distribution,	like	that	generated	by	tossing	many	pennies.	In	class	exercise:	flipping	seven	pennies.	Student
flip	seven	pennies	and	record	the	number	of	heads.	The	data	for	a	section	is	gathered	and	tabulated.	The	students	then	prepare	a	relative	frequency	histogram	of	the	number	of	heads	and	calculate	the	mean	number	of	heads	from	Σ	x*p(x).	7.2	Seven	Pennies	In	the	table	below,	seven	pennies	are	tossed	eight	hundred	and	fifty	eight	times.	For	each	toss
of	the	seven	pennies,	the	number	of	pennies	landing	heads	up	are	counted.	#	of	heads	xFrequencyRel	Freq	P(x)	790.0105	61120.1305	51470.1713	42280.2657	31950.2273	21200.1399	1450.0524	020.0023	8581.00	The	relative	frequency	histogram	for	a	large	number	of	pennies	is	usually	a	heap-like	shape.	For	seven	pennies	the	theoretic	shape	of	an
infinite	number	of	tosses	can	be	calculated	by	considering	the	whole	sample	space	for	seven	pennies	HHHHHHH	HHHHHHT	HHHHHHTT	HHHHTTT	HHHTTTT	HHTTTTTT	HTTTTTT	TTTTTTT	.......	HHHHHTH	HHHHHTHT	HHHTHTT	HHTHTTT	THTTTTTH	TTTTTTH	.......	HHHHTHH	HHHHTHHT	HHTHHTT	HTHHTTT	THTTTTHT	TTTTTHT	.......	...
...	...	...	...	...	If	one	works	out	all	the	possible	combinations	then	one	attains:	(two	sides)^(7	pennies)	=	128	total	possibilities	1	way	to	get	seven	heads/128	total	possible	outcomes	=	1/128=	0.0078	7	ways	to	get	six	heads	and	one	tail/128	possibilities	=	7/128	=0.0547	21	ways	to	get	five	heads	and	two	tails/128	=	21/128	=	0.1641	35	ways	to	get	four
heads	and	three	tails/128	=	35/128	=	0.2734	35	ways	to	get	three	heads	and	four	tails/128	=	35/128	=	0.2734	21	ways	to	get	two	heads	and	five	tails/128	=	21/128	=	0.1641	7	ways	to	get	one	head	and	six	tails/128	possibilities	=	7/128	=0.0547	1	way	to	get	seven	tails/128	total	possible	outcomes	=	1/128=	0.0078	If	the	theoretic	relative	frequencies
(probabilities)	are	added	to	our	table:	#	of	headsxFrequencyRel	FreqP(x)Theoretic	790.01050.0078	61120.13050.0547	51470.17130.1641	42280.26570.2734	31950.22730.2734	21200.13990.1641	1450.05240.0547	020.00230.0078	8581.001.00	If	the	theoretic	relative	frequencies	are	added	as	a	line	to	our	graph,	the	following	graph	results:	The	gray
line	represents	the	shape	of	the	distribution	for	an	infinite	number	of	coin	tosses.	The	shape	of	the	distribution	is	symmetrical.	If	both	the	number	of	pennies	is	increased	as	well	as	the	number	of	tosses,	then	the	graph	would	become	smoother	and	increasingly	symmetrical.	Below	is	a	graph	for	tens	of	thousands	of	tosses	of	21	pennies.	The	shape	of
the	smooth	curve	is	called	the	"normal	distribution"	in	statistics.	If	the	number	of	pennies	and	tosses	are	both	allowed	to	go	to	infinity,	then	a	smooth	curve	results	looking	a	lot	like	the	curve	seen	above.	The	smooth	curve	that	results	can	be	described	by	a	function.	Statistical	mathematicians	would	say	that	as	the	number	of	sides	and	tosses
approaches	infinity,	the	discrete	distribution	approaches	a	continuous	distribution	described	by	the	function	below.	In	the	above	function,	σ	is	the	population	standard	deviation,	μ	is	the	population	mean,	e	is	the	base	e,	and	π	is	pi.	The	name	of	this	function	is	the	"normal"	curve.	I	like	to	think	of	it	as	being	called	normal	because	it	is	what	"normally"
happens	if	you	toss	a	lot	of	pennies	a	lot	of	times!	If	the	above	function	is	graphed	for	a	mean	μ	=	0	and	a	population	standard	deviation	σ	=	1,	then	the	following	graph	results:	The	above	function	has	the	following	properties:	symmetrical	about	μ	=	0	"bell"	shaped	highest	probability	at	μ	=	0	approaches	x-axis	but	never	crosses	(asymptotic	to	the	x-
axis)	the	numbers	on	the	x-axis	are	the	number	of	standard	deviations	away	from	the	mean	transition	(inflection)	points	at	μ	±	1σ	the	area	under	any	portion	of	the	curve	is	the	probability	of	x	being	within	that	span	the	area	under	the	curve	between	μ	-	σ	and	μ	+	σ	is	0.6826,	thus	the	probability	that	an	x	value	is	between	μ	-	σ	and	μ	+	σ	is	68.26%	The
area	under	each	"section"	of	the	normal	curve	can	be	seen	in	the	following	diagram.	For	example,	the	area	under	the	curve	beyond	(to	the	right	of)	μ	+	2σ	is	0.0228	or	2.28%.	The	probability	of	a	data	value	being	greater	than	μ	+	2σ	is	0.0228.	A	data	value	could	be	expected	out	here	once	in	about	44	instances.	6σ:	"Six	sigma"	A	business	quality
program	that	attempts	to	bring	error	down	to	3	in	a	million	(μ	+	6σ)	When	we	speak	of	the	"area	under"	the	normal	curve,	one	can	think	of	a	chapter	two	histogram.	As	per	chapter	five,	the	relative	frequency	is	the	probability	x	will	be	in	a	given	class.	histgram	version	of	normal	curve	0.0013	0.0214	0.1359	0.3413	0.3413	0.1359	0.0214	0.0013	The
shape	of	the	normal	curve	is	affected	by	the	standard	deviation.	In	the	diagram	below	m	is	the	mean	μ	and	sx	is	the	standard	deviation.	Changes	to	the	mean	shift	the	normal	curve	horizontally:	How	relative	frequencies	become	area	under	a	curve	Let	us	begin	with	a	more	familiar	example	from	our	work	earlier	in	the	term.	Heap	like	shapes	often
result	from	histograms	of	data.	The	following	is	a	frequency	table	for	the	height	data	for	60	females	in	statistics	class	in	an	earlier	term.	Female	height	CULFrequencyRelative	Frequency	59.660.10	61.2160.27	62.8180.30	64.4160.27	6640.07	Sums:601.00	The	following	relative	frequency	histogram	for	the	heights	of	60	females	above	has	the	following
distribution:	Imagine	changing	this	discrete	distribution	into	a	continuous	distribution.	The	probability	distribution	above	says	that	10%	of	the	women	are	less	than	or	equal	to	59.6	inches	tall.	27%	of	the	women	measured	are	taller	than	59.6	inches	and	shorter	than	or	equal	to	61.2	inches.	What	is	the	probability	of	finding	a	female	student	taller	than
64.4	inches	tall?	Seven	percent.	The	area	"under"	each	segment	of	the	"curve"	is	the	probability	of	a	women	being	in	that	range	of	heights.	The	difficulty	with	the	above	analysis	is	seen	in	attempting	to	answer	the	following	question:	What	percentage	of	female	students	are	taller	than	60	inches?	This	cannot	easily	be	determined	from	the	above	data.
An	answer	could	be	interpolated,	but	that	would	be	the	best	we	would	be	able	to	do.	In	some	instances	the	actual	shape	of	the	population	distribution	is	not	exactly	known,	but	the	distribution	is	expected	to	be	heaped,	to	behave	"normally"	and	heap	up	in	the	manner	of	the	normal	distribution.	Because	there	is	a	mathematical	equation	for	the	normal
distribution,	the	probabilities	(the	areas	under	the	curve!)	can	be	determined	mathematically.	A	Normal	Curve	Example	Suppose	we	know	that	sixty	customers	arrive	at	a	sakau	market	on	a	Friday	night	at	a	mean	time	of	μ	=	7:00	P.M.	with	a	standard	deviation	of	σ	=	30	minutes	(0.5	hours).	Suppose	also	that	the	time	of	arrival	for	the	customers	is
normally	distributed	(note	that	areas	are	rounded).	We	would	expect	0.50	of	the	customers	to	arrive	by	7:00.	7:00	is	the	mean	value,	the	middle	of	the	normal	curve,	half-way.	That	would	be	equal	to:	60	*	0.50	=	30	customers	by	7:00.	We	would	expect	0.341	or	34.1%	of	the	customers	to	arrive	between	6:30	and	7:00.	That	would	be	60	*	0.341	=	20.46
or	about	21	customers.	0.682	or	68.2%	of	the	customers	should	arrive	between	6:30	(	-1	σ)	and	7:30	(+1	σ).	Here	is	the	origin	of	of	my	saying	that	the	"68%"	of	the	students	have	performed	between	μ	-	σ	and	μ	+	σ	on	a	test	if	the	test	scores	are	normally	distributed.	Note	that	we	cannot	do	calculations	such	as,	"How	many	customers	have	arrived	by
6:45?"	because	our	graph	does	not	include	6:45.	We	can	only	make	calculations	on	integer	numbers	of	standard	deviations	away	from	the	mean.	Note	that	in	the	above	example	the	population	mean	μ	and	population	standard	deviation	σ	are	used.	Our	normal	distribution	work	is	based	on	a	theories	that	use	the	population	parameters.	Later	in	the
course	we	will	use	a	modified	normal	distribution	called	the	student's	t-distribution	to	work	with	sample	statistics	such	as	the	sample	mean	x	and	the	sample	standard	deviation	sx	for	small	samples.	For	many	examples	in	this	text,	the	population	parameters	are	not	known.	Until	the	student's	t-distribution	is	introduced,	data	that	forms	a	reasonably
"heap-like"	shape	will	be	analyzed	using	the	normal	distribution.	7.4	from	an	x	value	to	a	probability	p	Areas	to	the	left	of	x	The	probability	p	is	the	same	as	the	area	under	the	normal	curve.	Probability,	expressed	often	as	a	percentage,	is	area.	Probability	is	also	the	relative	frequency.	In	this	class	probability,	p,	area,	and	relative	frequency	are	all
used	interchangeably.	If	x	is	not	an	whole	number	of	standard	deviations	from	the	mean,	then	we	cannot	use	a	diagram	as	seen	above.	Spreadsheets	have	a	function	that	calculates	the	area	(probability)	to	the	left	of	ANY	x	value.	The	letter	p	for	probability	is	used	for	the	area	to	the	left	of	x.	The	function	that	calculates	the	area	to	the	left	of	x	is:
=NORMDIST(x,μ,σ,1)	The	mean	height	μ	for	43	female	students	in	statistics	is	62.0	inches	with	a	standard	deviation	of	1.9.	Determine	the	probability	that	a	student	is	less	than	60	inches	tall	(five	feet	tall).	The	probability	p	=	=normdist(60,62,1.9,1)	=0.1463	14.63%	of	the	area	is	to	the	left	of	60	inches.	The	probability	a	female	student	in	statistics
class	is	below	60	inches	is	14.63%.	Notation	note:	In	probability	notation	the	above	would	be	written	p(x	<	60)	=	0.1463	When	the	words	"less	than,	smaller,	shorter,	fewer,	up	to	and	including"	are	used	then	the	NORMDIST	function	can	be	used	to	calculate	the	probability.	Area	to	the	right	of	x	The	mean	number	of	cups	of	sakau	consumed	in	sakau
markets	on	Pohnpei	is	μ	=	3.65	with	a	standard	deviation	of	σ	=	2.52.	Note	that	this	data	is	actually	based	on	customer	data	for	227	customers	at	four	markets	-	one	near	Kolonia	and	three	in	Kitti.	Although	this	data	is	actually	sample	data	and	not	population	data,	we	will	treat	the	mean	and	standard	deviation	as	population	parameters.	The	data	is
not	perfectly	normally	distributed.	The	data	is,	however,	distributed	in	a	reasonably	smooth	heap.	What	is	the	probability	a	customer	will	drink	more	than	five	cups?	Note	the	word	"more."	If	the	question	were	"What	is	the	probability	that	a	customer	will	drink	less	than	five	cups,	then	the	solution	would	be	=NORMDIST(5,3.65,2.52,1).	This	result	is
0.70	or	a	70%	probability	a	customer	will	drink	less	than	five	cups.	The	area	under	the	whole	normal	curve	is	1.00.	Remember	that	1.00	is	also	100%.	If	70%	drink	less	than	five	cups,	then	we	can	calculate	the	probability	that	those	who	drink	more	than	five	cups	is	30%.	100%	−	70%	=	30%.	Or	1.00	−	0.70	=	0.30	Making	a	sketch	of	the	normal	curve
including	the	mean,	the	x-value,	and	the	area	of	interest	can	help	determine	when	to	subtract	a	result	from	one	and	when	to	not.	Area	between	two	x	values	A	study	of	the	prevalence	of	diabetes	in	a	village	on	Pohnpei	found	a	mean	fasting	blood	sugar	level	of	μ	=	117	with	a	standard	deviation	σ	=	33	in	mg/dl	for	females	aged	20	to	29	years	old.	Blood
sugar	levels	between	120	and	130	are	considered	borderline	diabetes	cases.	What	percentage	of	the	females	aged	20	to	29	years	old	in	this	village	are	between	a	mean	fasting	blood	sugar	of	120	and	130	mg/dl?	For	this	example,	presume	that	the	distribution	is	normal.	The	probability	is	the	percentage.	The	probability	is	the	area	between	x	=	120	and
x	=	130	as	seen	in	the	image	below.	In	probability	notation	this	would	be	written	p(120	<	x	<	130)	=	?	To	obtain	the	area	between	120	and	130,	calculate	the	area	to	the	left	of	120.	Then	calculate	the	area	to	the	left	of	130.	Subtract	the	area	to	the	left	of	120	from	the	area	to	the	left	of	130.	What	remains	is	the	area	between	120	and	130.	The	table
below	represents	a	spreadsheet	laid	out	to	calculate	the	area	to	the	left	of	120	in	column	B	and	the	area	to	the	left	of	130	in	column	C.	ABCD	1x120130	2mean	μ117117	3stdev	σ3333	4normdist=NORMDIST(B1,B2,B3,1)=NORMDIST(C1,C2,C3,1)=C4-B4	4normdist0.540.650.11	Row	four	is	presented	twice:	once	with	the	formulas	and	once	with	the
results	of	the	formulas.	The	area	to	the	left	of	120	is	0.54.	The	area	to	the	left	of	130	is	0.65.	0.65	−	0.54	is	0.11.	The	probability	that	females	aged	20	to	29	years	old	in	this	village	have	a	blood	sugar	level	between	120	and	130	is	11%.	7.5	Area	to	x	Conversely,	given	a	probability,	a	mean,	and	a	standard	deviation,	an	x	value	can	be	calculated.	On	the
college	essay	admissions	test	a	perfect	score	is	40.	In	a	recent	spring	run	of	the	admissions	test	the	mean	score	was	21	and	the	standard	deviation	was	12.	Below	what	score	x	are	the	lowest	33%	of	the	student	scores?	Presume	that	the	data	is	normally	distributed.	In	this	case	we	have	an	area.	Percentages	are	probabilities.	Probabilities	are	area
under	the	curve.	We	do	not	know	x.	To	find	the	area	to	the	left	of	x	the	function	NORMINV	is	used.	The	letter	p	is	the	probability,	the	area.	=NORMINV(p,μ,σ)	In	this	case	area	=NORMINV(0.33,21,12).	Note	that	the	area	is	expressed	as	a	decimal.	Alternatively	the	area	could	be	entered	as	33%.	The	result	of	this	calculation	is	15.72.	33%	of	the
students	scored	below	a	15.72	on	the	essay	test.	Area	to	the	right	of	x	Suppose	the	height	of	women	at	the	College	is	normally	distributed	with	a	mean	of	62.0	inches	and	a	standard	deviation	of	1.9	inches.	Suppose	I	want	to	know	the	minimum	height	of	the	top	10%	of	the	female	students	at	the	College.	In	this	instance	I	have	a	probability,	the	top
10%.	The	NORMINV	function,	however,	requires	the	area	to	the	right	of	x.	If	the	area	to	the	right	is	10%,	then	the	area	to	the	left	is	100%	−	10%	=	90%.	area	=NORMINV(0.90,62,1.9)	The	result	is	64.43.	Thus	the	minimum	height	of	the	top	10%	is	64.43	inches.	If	there	are	350	women	at	the	college,	then	0.10	*	350	=	35	women	can	be	expected	to	be
taller	than	64.4	inches.	Domino's	pizza	knows	that	the	average	length	of	time	from	receiving	an	order	to	delivering	to	the	customer	is	20	minutes	with	a	standard	deviation	7	min	45	seconds.	Treat	these	sample	statistics	as	population	parameters	for	now.	Dominoes	wants	to	guarantee	a	delivery	time	as	part	of	a	marketing	campaign,	"Your	pizza	in	___
minutes	of	your	money	back!"	Dominoes	is	willing	to	refund	10%	of	their	orders,	what	is	the	quickest	delivery	time	they	should	set	the	grantee	at?	The	area	to	the	left	of	x	is	90%	therefore	the	correct	function	is	=NORMINV(0.9,20,7.75)	The	result	is	29.92	minutes	So	you	guarantee	delivery	in	30	minutes	or	less	and	you'll	only	pay	out	on	10%	of	the
pizzas.	(From	another	perspective	this	is	a	"Buy	ten	to	get	one	free	program").	As	noted	in	earlier	chapters,	statistics	are	the	measures	of	a	sample.	The	measures	are	used	to	characterize	the	sample	and	to	infer	measures	of	the	population	termed	parameters.	Parameter	A	parameter	is	a	numerical	description	of	a	population.	Examples	include	the
population	mean	μ	and	the	population	standard	deviation	σ.	Statistic	A	statistic	is	a	numerical	description	of	a	sample.	Examples	include	a	sample	mean	x	and	the	sample	standard	deviation	sx.	Good	samples	are	random	samples	where	any	member	of	the	population	is	equally	likely	to	be	selected	and	any	sample	of	any	size	n	is	equally	likely	to	be
selected.	Consider	four	samples	selected	from	a	population.	The	samples	need	not	be	mutually	exclusive	as	shown,	they	may	include	elements	of	other	samples.	Population	population	size	N	population	mean	µ	population	stdev	σ	Sample1	sample	size	n1	sample	mean	x1	sample	stdev	sx1	Sample2	sample	size	n2	sample	mean	x2	sample	stdev	sx2
Sample3	sample	size	n3	sample	mean	x3	sample	stdev	sx3	Sample4	sample	size	n4	sample	mean	x4	sample	stdev	sx4	The	sample	means	x1,	x2,	x3,	x4,	can	include	a	smallest	sample	mean	and	a	largest	sample	mean.	Choosing	a	number	of	classes	can	generate	a	histogram	for	the	sample	means.	The	question	this	chapter	answers	is	whether	the	shape
of	the	distribution	of	sample	means	from	a	population	is	any	shape	or	a	specific	shape.	Sampling	Distribution	of	the	Mean	The	shape	of	the	distribution	of	the	sample	mean	is	not	any	possible	shape.	The	shape	of	the	distribution	of	the	sample	mean,	at	least	for	good	random	samples	with	a	sample	size	larger	than	30,	is	a	normal	distribution.	That	is,	if
you	take	random	samples	of	30	or	more	elements	from	a	population,	calculate	the	sample	mean,	and	then	create	a	relative	frequency	distribution	for	the	means,	the	resulting	distribution	will	be	normal.	In	the	following	diagram	the	underlying	data	is	bimodal	and	is	depicted	by	the	light	blue	columns.	Thirty	data	elements	were	sampled	forty	times	and
forty	sample	means	were	calculated.	A	relative	frequency	histogram	of	the	sample	means	is	plotted	in	a	heavy	black	outline.	Note	that	though	the	underlying	distribution	is	bimodal,	the	distribution	of	the	forty	means	is	heaped	and	close	to	symmetrical.	The	distribution	of	the	forty	sample	means	is	normal.	In	the	following	diagram	the	underlying	data
is	bimodal	and	is	depicted	by	the	columns	with	thin	outlines.	Thirty	data	elements	were	sampled	forty	times	and	forty	sample	means	were	calculated.	A	relative	frequency	histogram	of	the	sample	means	is	plotted	with	a	heavy	black	outline.	Note	that	though	the	underlying	distribution	is	bimodal,	the	distribution	of	the	forty	means	is	heaped	and	close
to	symmetrical.	The	distribution	of	the	forty	sample	means	is	normal.	The	center	of	the	distribution	of	the	sample	means	is,	theoretically,	the	population	mean.	To	put	this	another	simpler	way,	the	average	of	the	sample	averages	is	the	population	mean.	Actually,	the	average	of	the	sample	averages	approaches	the	population	mean	as	the	number	of
sample	averages	approaches	infinity.	Another	Example	(2002)	Consider	a	population	consisting	of	61	body	fat	measurements	for	women	at	the	COM-FSM	national	campus:	15.6,	18.9,	20,	20.3,	20.6,	20.8,	21.9,	22.1,	22.2,	22.2,	22.4,	22.7,	22.8,	22.8,	23.5,	23.5,	23.6,	23.8,	23.9,	24.3,	24.4,	25.2,	25.2,	25.5,	25.6,	26.1,	26.2,	27.3,	27.5,	27.8,	27.9,	28,	28,
28.1,	28.1,	28.3,	28.4,	29.2,	29.3,	29.3,	29.5,	29.8,	30.5,	31.1,	31.6,	32.9,	34,	34.4,	34.9,	35.5,	35.8,	35.9,	36,	37.5,	38.2,	38.8,	40,	40.8,	44.1,	47,	50.1	The	population	mean	(parameter)for	the	above	data	is	28.7.	Consider	those	measurements	as	being	the	total	population.	The	distribution	of	those	measurements	using	an	eight	class	histogram	is	seen
below.	Class	Upper	LimitFreqRelFreq	19.920.03	24.2170.28	28.5180.30	32.980.13	37.280.13	41.550.08	45.810.02	50.120.03	611.00	The	distribution	is	skewed	right,	as	seen	above.	If	we	were	doing	a	statistical	study,	we	would	measure	a	random	sample	of	women	from	the	population	and	calculate	the	mean	body	fat	for	our	sample.	Then	we	would
use	our	sample	statistic	(our	sample	mean)	to	estimate	the	population	parameter	(the	population	mean).	Understanding	the	SHAPE	of	the	distribution	of	many	sample	means	is	a	key	to	using	a	single	sample	mean	(a	statistic)	to	estimate	the	population	mean	(a	parameter).	The	table	that	follows	consists	of	ten	randomly	selected	samples	from	the
population	and	the	means	for	each	sample.	Each	sample	has	a	size	of	n=10	women.	The	bottom	row	is	the	mean	of	each	sample.	Smpl	1Smpl	2Smpl	3Smpl	4Smpl	5	Smpl	6Smpl	7Smpl	8Smpl	9Smpl	10	40.84020.324.321.944.1	22.822.134.450.1	40.838.227.325.228.338.2	2029.520.829.2	3427.52835.927.929.2	38.825.631.635.5
26.135.54023.923.822.8	24.422.238.228.3	20.327.534.927.832.9	20.629.827.328.122.8	25.232.93423.629.325.6	38.227.820.320.3	30.525.629.335.522.4	27.826.230.522.724.4	37.54023.929.528.424.4	29.23631.136	4034.42823.627.831.1	25.220.84734	15.627.320.831.635.828	35.831.122.222.4	31.0832.8928.6528.0927.85	29.1829.0427.2929.6430.3
The	mean	of	the	values	in	the	last	row	is	29.4.	This	could	be	called	the	mean	of	the	sample	means!	A	histogram	can	be	used	to	show	the	distribution	of	these	sample	means.	These	frequencies	and	relative	frequencies	are	in	the	two	rightmost	columns	of	the	table	below.	CULFreqRelFreqAvgDistRFavg	19.920.0300	24.2170.2800	28.5180.3030.3
32.980.1360.6	37.280.1310.1	41.550.0800.0	45.810.0200.0	50.120.0300.0	611.00101.00	Note	that	the	sample	means	are	clustered	tightly	about	the	population	mean.	This	can	be	seen	below	where	the	sample	mean	distribution	is	superimposed	(placed	on	top	of!)	the	population	distribution.	The	Shape	of	the	Sample	Mean	Distribution	is	Normal!	The
sample	mean	distribution	is	a	heap	shaped,	as	in	the	shape	of	the	normal	distribution,	and	centered	on	the	population	mean.	If	the	sample	size	is	30	or	more,	then	the	sample	means	are	NORMALLY	distributed	even	when	the	underlying	data	is	NOT	normally	distributed!	If	the	sample	size	is	less	than	30,	then	the	distribution	of	the	samples	means	is
normal	if	and	only	if	the	underlying	data	is	normally	distributed.	The	normal	distribution	of	the	sample	means	(averages)	allows	us	to	use	our	normal	distribution	probabilities	to	estimate	a	range	for	μ.	The	mean	of	the	sample	means	is	a	point	estimate	for	the	population	mean	μ.	The	mean	of	the	sample	means	can	be	written	as:	In	this	text	the	above	is
sometimes	written	as	μ	x	The	value	of	the	mean	of	the	sample	means	μ	x	is,	for	a	very	large	number	of	samples	each	of	which	has	a	very	large	sample	size,	the	population	mean.	As	a	practical	matter	we	use	the	mean	of	a	single	large	sample.	How	large?	The	sample	size	must	be	at	least	n	=	30	in	order	for	the	sample	mean	(a	statistic)	to	be	a	good
estimate	for	the	population	mean	(a	parameter).	This	requirement	is	necessary	to	ensure	that	the	distribution	of	the	sample	means	will	be	normal	even	when	the	underlying	data	is	not	normal.	If	we	are	certain	the	data	is	normally	distributed,	then	a	sample	size	n	of	less	than	30	is	acceptable.	Later	in	the	course	we	will	modify	the	normal	distribution
to	handle	samples	of	sizes	less	than	30	for	which	the	distribution	of	the	underlying	data	is	either	unknown	or	not	normal.	This	modification	will	be	called	the	student's	t-distribution.	The	student's	t-distribution	is	also	heap-shaped.	The	normal	distribution,	and	later	the	student's	t-distribution,	will	be	used	to	quote	a	range	of	possible	values	for	a
population	mean	based	on	a	single	sample	mean.	Knowing	that	the	sample	mean	comes	from	a	heap-shaped	distribution	of	all	possible	means,	we	will	center	the	normal	distribution	at	the	sample	mean	and	then	use	the	area	under	the	curve	to	estimate	the	probability	(confidence)	that	we	have	"captured"	the	population	mean	in	that	range.	8.2	Central
Limit	Theorem	The	Law	of	Large	Numbers	says	that	as	the	sample	size	n	increases,	the	sample	mean	x	gets	ever	closer	the	population	mean	μ.	If	a	distribution	has	a	mean	μ	and	a	standard	deviation	σ,	as	the	sample	sizes	grow	larger,	the	Central	Limit	Theorem	says	that	the	values	of	the	sample	means	will	tend	to	be	distributed	increasingly	like	the
normal	distribution.	(With	thanks	to	Dr.	Lewis	E.	MacCarter	for	clarifying	this	distinction,	personal	correspondence).	Standard	Error	The	standard	deviation	of	the	distribution	of	the	sample	means	There	is	one	complication:	the	sample	standard	deviation	of	a	single	sample	is	not	a	good	estimate	of	the	standard	deviation	of	the	sample	means.	Note
that	the	distribution	of	the	sample	means	is	NARROWER	than	the	sample	in	the	above	example.	The	shape	of	the	distribution	of	the	sample	means	is	narrower	and	taller	than	the	shape	of	the	underlying	data.	In	the	diagram,	the	shape	of	the	underlying	data	is	normal,	the	taller	narrower	distribution	is	the	distribution	of	all	the	sample	means	for	all
possible	samples.	The	standard	deviation	of	a	single	sample	has	to	be	reduced	to	reflect	this.	This	reduction	turns	out	to	be	inversely	related	to	the	square	root	of	the	sample	size.	This	is	not	proven	here	in	this	text.	The	standard	deviation	of	the	distribution	of	the	sample	means	is	equal	to	the	actual	population	standard	deviation	divided	by	the	square
root	of	n.	The	standard	deviation	divided	by	the	square	root	of	the	sample	size	is	called	the	standard	error	of	the	mean.	If	σ	is	known,	then	the	above	formula	can	be	used	and	the	distribution	of	the	sample	mean	is	normal.	As	a	practical	matter,	since	we	rarely	know	the	population	standard	deviation	σ,	we	will	use	the	sample	standard	deviation	sx	in
class	to	estimate	the	standard	deviation	of	the	sample	means.	This	formula	will	then	appear	in	various	permutations	in	formulas	used	to	estimate	a	population	mean	from	a	sample	mean.	When	we	use	the	sample	standard	deviation	sx	we	will	use	the	student's	t-distribution.	The	student's	t-distribution	looks	like	a	normal	distribution.	The	student's	t-
distribution,	however,	is	adjusted	to	be	a	more	accurate	predictor	of	the	range	for	a	population	mean.	Later	we	will	learn	to	use	the	student's	t-distribution.	Until	that	time	we	will	play	a	little	fast	and	loose	and	use	sample	standard	deviations	to	calculate	the	standard	error	of	the	mean.	In	a	spreadsheet	the	standard	error	of	the	mean	can	be	calculated
using	the	formula:	=STDEV(data)/SQRT(COUNT(data))	Another	way	to	think	about	the	standard	error	is	that	the	standard	errors	captures	the	"fuzziness"	of	the	mean.	The	mean	is	different	than	individual	data	points,	individual	numbers.	The	mean	is	composed	of	a	collection	of	data	values.	The	mean	is	composed	of	a	sample	of	data	values.	Pick	a
different	sample	from	the	population,	you	get	a	different	mean.	The	change	in	the	mean	is	only	a	random	result.	The	change	in	the	mean	has	no	meaning.	The	standard	error	is	a	measure	of	that	fuzziness.	In	the	next	chapter	that	"fuzziness"	will	be	expanded	to	two	standard	errors	to	either	side	of	the	mean.	Later	that	"two	standard	errors"	will	be
adjusted	for	small	sample	sizes.	Two	standard	errors,	and	the	subsequent	adjustment	to	that	value	of	two,	are	ways	of	mathematically	describing	the	fuzziness	of	the	mean.	Whenever	we	use	a	single	statistic	to	estimate	a	parameter	we	refer	to	the	estimate	as	a	point	estimate	for	that	parameter.	When	we	use	a	statistic	to	estimate	a	parameter,	the
verb	used	is	"to	infer."	We	infer	the	population	parameter	from	the	sample	statistic.	X	X	Sample	Sample	size	n	Sample	mode	Sample	median	Sample	mean	Sample	standard	dev	sx	Sample	distribution	shape	Population	population	size	N	population	mode	population	median	population	mean	population	standard	deviation	population	distribution	shape
id:071venn	Some	population	parameters	cannot	be	inferred	from	the	statistic.	The	population	size	N	cannot	be	inferred	from	the	sample	size	n.	The	population	minimum,	maximum,	and	range	cannot	be	inferred	from	the	sample	minimum,	maximum,	and	range.	Populations	are	more	likely	to	have	single	outliers	than	a	smaller	random	sample.	The
population	mode	usually	cannot	be	inferred	from	a	smaller	random	sample.	There	are	special	circumstances	under	which	a	sample	mode	might	be	a	good	estimate	of	a	population	mode,	these	circumstances	are	not	covered	in	this	class.	The	sample	median	can	be	a	good	point	estimate	for	a	population	median,	especially	in	situations	where	the	data	is
not	normally	distributed.	In	a	distribution	with	extreme	outliers,	the	median	is	usually	a	better	choice	as	an	estimator	than	the	mean.	This	text	does	not	explore	these	distributions.	The	statistic	we	will	focus	on	is	the	sample	mean	x.	The	normal	distribution	of	sample	means	for	many	samples	taken	from	a	population	provides	a	mathematical	way	to
calculate	a	range	in	which	we	expect	to	"capture"	the	population	mean	and	to	state	the	level	of	confidence	we	have	in	that	range's	ability	to	capture	the	population	mean	µ.	Point	Estimate	for	the	population	mean	µ	and	Error	The	sample	mean	x	is	a	point	estimate	for	the	population	mean	µ	The	sample	mean	x	for	a	random	sample	will	not	be	the	exact
same	value	as	the	true	population	mean	µ.	The	error	of	a	point	estimate	is	the	magnitude	of	the	point	estimate	minus	the	actual	parameter	(where	the	magnitude	is	always	positive).	The	error	in	using	x	for	µ	is	(	x	−	µ	).	Note	that	to	take	a	positive	value	we	need	to	use	either	the	absolute	value	|(	x	-	µ	)|	or	√(	x	-	µ	)2.	Note	that	the	error	of	an	estimate	is
the	distance	of	the	statistic	from	the	parameter.	Unfortunately	we	cannot	calculate	the	error.	The	reason	why	we	are	using	the	sample	mean	x	to	estimate	the	population	mean	µ	is	because	we	do	not	know	the	population	mean	µ.	For	example,	given	the	mean	body	fat	index	(BFI)	of	51	male	students	at	the	national	campus	is	x	=	19.9	with	a	sample
standard	deviation	of	sx	=	7.7,	what	is	the	error	|(	x	-	µ	)|	if	µ	is	the	average	BFI	for	male	COMFSM	students?	We	cannot	calculate	this.	We	do	not	know	µ!	So	we	say	x	is	a	point	estimate	for	µ.	That	would	make	the	error	equal	to	√(x	−	x)2	=	zero.	This	is	a	silly	and	meaningless	answer.	Is	x	really	the	exact	value	of	µ	for	all	the	males	at	the	national
campus?	No,	the	sample	mean	is	not	going	to	be	the	same	as	the	true	population	mean.	Point	estimate	for	the	population	standard	deviation	σ	The	sample	standard	deviation	sx	is	a	reasonable	point	estimate	for	the	population	standard	deviation	σ.	In	more	advanced	statistics	classes	concern	over	bias	in	the	sample	standard	deviation	as	an	estimator
for	the	population	standard	deviation	is	considered	more	carefully.	In	this	class,	and	in	many	applications	of	statistics,	the	sample	standard	deviation	sx	is	used	as	the	point	estimate	for	the	population	standard	deviation	σ.	9.12	Introduction	to	Confidence	Intervals	We	might	be	more	accurate	if	we	were	to	say	that	the	mean	µ	is	somewhere	between
two	values.	We	could	estimate	a	range	for	the	population	mean	µ	by	going	one	standard	error	below	the	sample	mean	and	one	standard	error	above	the	sample	mean.	Remember,	the	standard	error	is	the	σ/√(n).	Note	that	the	formula	for	the	standard	error	requires	knowing	the	population	standard	deviation	σ.	We	do	not	usually	know	this	value.	In
fact,	if	we	knew	σ	then	we	would	probably	also	know	the	population	mean	µ.	In	section	9.2	we	will	use	the	sample	standard	deviation	or	sx/√(n)	and	the	student's	t-distribution	to	calculate	a	range	in	which	we	expect	to	find	the	population	mean	µ.	In	the	diagram	the	lower	curve	represents	the	distribution	of	data	in	a	population	with	a	normal
distribution.	Remember,	distribution	simply	means	the	shape	of	the	frequency	or	relative	frequency	histogram,	now	charted	as	a	continuous	line.	The	narrower	and	taller	line	is	the	distribution	of	all	possible	sample	means	from	that	population.	For	the	population	curve	(lower,	broader)	the	distance	to	each	inflection	point	is	one	standard	deviation:	±
σ.	For	the	distribution	of	the	sample	means	(higher,	narrower)	the	distance	to	each	inflection	point	is	one	standard	error	of	the	mean:	±	σ/√(n).	The	area	from	minus	one	standard	error	to	plus	one	standard	error	for	the	normal	distribution	is	known	to	be	68.2%.	Here	is	a	key	point:	If	I	set	my	estimate	for	µ	to	be	between	x	-	σ/√n	and	x	+	σ/√n,	then
there	is	a	0.682	probability	that	µ	will	be	included	in	that	interval.	The	"68.2%	probability"	is	termed	"the	level	of	confidence."	Probability	note:	the	reality	is	that	the	population	mean	is	either	inside	or	outside	the	range	we	have	calculated.	We	are	right	or	wrong,	100%	or	0%.	Thus	saying	that	there	is	a	68.2%	probability	that	the	population	mean	has
been	"captured"	by	the	range	is	not	actually	correct.	This	is	the	main	reason	why	we	shift	to	calling	the	range	for	the	mean	a	confidence	interval.	We	start	saying	things	such	as	"I	am	68.2	percent	confident	the	mean	is	in	the	range	quoted."	Statisticians	assert	that	over	the	course	of	a	lifetime,	if	one	always	uses	a	68.2%	confidence	interval	one	will
right	68.2%	of	the	time	in	life.	This	is	small	comfort	when	an	individual	experimental	result	might	be	very	important	to	you.	95%	Confidence	Intervals	In	many	fields	of	inquiry	a	common	level	of	confidence	used	is	a	95%	level	of	confidence.	For	the	purposes	of	this	course	a	95%	confidence	interval	is	often	used.	Note	that	when	a	confidence	interval	is
not	95%,	then	specific	reference	to	the	chosen	confidence	level	must	be	stated.	Stating	the	level	of	confidence	is	always	good	form.	While	many	studies	are	done	at	a	95%	level	of	confidence,	in	some	fields	higher	or	lower	levels	of	confidence	may	be	common.	Scientific	studies	often	use	99%	or	higher	levels	of	confidence.	9.2	Confidence	intervals	for	n
>	5	using	sx	When	using	the	sample	standard	deviation	sx	to	generate	a	confidence	interval	for	the	population	mean,	a	distribution	called	the	Student's	t-distribution	is	used.	The	Student's	t-distribution	looks	like	the	normal	distribution,	but	the	t-distribution	changes	shape	slightly	as	the	sample	size	n	changes.	The	t-distribution	looks	like	a	normal
distribution,	but	the	shape	"flattens"	as	n	decreases.	As	the	sample	size	decreases,	the	t-distribution	becomes	flatter	and	wider,	spreading	out	the	confidence	interval	and	"pushing"	the	lower	and	upper	limits	away	from	the	center.	For	n	>	30	the	Student's	t-distribution	is	almost	identical	to	the	normal	distribution.	When	we	sketch	the	Student's	t-
distribution	we	draw	the	same	heap	shape	with	two	inflection	points.	To	use	the	Student's	t-distribution	the	sample	must	be	a	good,	random	sample.	The	sample	size	can	be	as	small	as	n	=	5.	For	n	≤	10	the	t-distribution	will	generate	very	large	ranges	for	the	population	mean.	The	range	can	be	so	large	that	the	estimate	is	without	useful	meaning.	A
basic	rule	in	statistics	is	"the	bigger	the	sample	size,	the	better."	The	spreadsheet	function	used	to	find	limits	from	the	Student's	t-distribution	does	not	calculate	the	lower	and	upper	limits	directly.	The	function	calculates	a	value	called	"t-critical"	which	is	written	as	tc.	By	using	a	range	that	is	t-critical	*	standard	error	above	and	below	the	sample	we
can	calculate	the	confidence	interval	in	which	we	would	expect	to	find	the	population	mean	to	a	level	of	confidence	c.	The	confidence	interval	will	be:	x	-	tc*sx/√n	≤	µ	≤	x	+	tc*sx/√n	Some	texts	use	t-critical	multiplied	by	the	Standard	Error	of	the	mean	SE	to	generate	the	margin	of	error	for	the	mean	E.	This	calculation	is	not	strictly	necessary.	If	the
margin	of	error	is	called	for,	then	do	not	confuse	the	standard	error	of	the	mean	with	the	margin	of	error	for	the	mean.	The	Standard	Error	of	the	mean	is	sx/√(n).	The	Margin	of	Error	for	the	mean	(E)	is	the	distance	from	either	end	of	the	confidence	interval	to	the	middle	of	the	confidence	interval.	The	margin	of	error	is	produced	from	the	Standard
Error:	Margin	of	Error	for	the	mean	=	tc*standard	error	of	the	mean	Margin	of	Error	for	the	mean	=	tc*sx/√n	In	texts	that	use	the	margin	of	error	for	the	mean	the	notation	for	the	confidence	interval	is:	x	-	E	≤	µ	≤	x	+	E	Calculating	tc	The	t-critical	value	will	be	calculated	using	the	spreadsheet	function	TINV.	TINV	uses	the	area	in	the	tails	to
calculate	t-critical.	The	area	under	the	whole	curve	is	100%,	so	the	area	in	the	tails	is	100%	−	confidence	level	c.	Remember	that	in	decimal	notation	100%	is	just	1.	If	the	confidence	level	c	is	in	decimal	form	use	the	spreadsheet	function	below	to	calculate	tc:	=TINV(1−c,n−1)	If	the	confidence	level	c	is	entered	as	a	percentage	with	the	percent	sign,
then	make	sure	the	1	is	written	as	100%:	=TINV(100%−c%,n−1)	Degrees	of	Freedom	The	TINV	function	adjusts	t-critical	for	the	sample	size	n.	The	formula	uses	n	−	1.	This	n	−	1	is	termed	the	"degrees	of	freedom."	For	confidence	intervals	of	one	variable	the	degrees	of	freedom	are	n	−	1.	Displaying	confidence	intervals	in	Google	Sheets™	In	Google
Sheets™	the	candlestick	chart	type	can	be	used	to	make	a	confidence	interval	chart.	Note	that	the	mean	is	repeated	twice,	shrinking	the	center	box	of	the	candlestick	chart	to	a	line	representing	the	mean	value.	In	the	Chart	types	tab	of	the	Chart	editor	one	may	need	to	Switch	rows/columns	and	adjust	the	Column	header	and	Row	label	settings.
Google	and	the	Google	logo	are	registered	trademarks	of	Google	Inc.,	used	with	permission.	The	confidence	interval	candlestick	chart	spreadsheet	used	to	produce	the	above	images	with	corrected	and	updated	values	in	Google	Sheets™	Runners	run	at	a	very	regular	and	consistent	pace.	As	a	result,	over	a	fixed	distance	a	runner	should	be	able	to
repeat	their	time	consistently.	While	individual	times	over	a	given	distance	will	vary	slightly,	the	long	term	average	should	remain	approximately	the	same.	The	average	should	remain	within	the	95%	confidence	interval.	For	a	sample	size	of	n	=	10	runs	from	the	college	in	Palikir	to	Kolonia	town,	a	runner	has	a	sample	mean	x	time	of	61	minutes	with	a
sample	standard	deviation	sx	of	7	minutes.	Construct	a	95%	confidence	interval	for	my	population	mean	run	time.	Step	1:	Determine	the	basic	sample	statistics	sample	size	n	=	10	sample	mean	x	=	61	[61	is	also	the	point	est.	for	the	pop.	mean	µ]	sample	standard	deviation	sx	=	7	Step	2:	Calculate	degrees	of	freedom,	tc,	standard	error	SE	degrees	of
freedom	=	10	-	1	=	9	tc	=TINV(1-0.95,10-1)	=	2.2622	Standard	Error	of	the	mean	sx/√n	=	7/sqrt(10)	=	2.2136	Keeping	four	decimal	places	in	intermediate	calculations	can	help	reduce	rounding	errors	in	calculations.	Alternatively	use	a	spreadsheet	and	cell	references	for	all	calculations.	Step	3:	Determine	margin	of	error	E	Margin	of	error	E	for	the
mean	=	tc*sx/√n	=	2.2622*7/√10	=	5.01	Given	that:	x	-	E	≤	µ	≤	x	+	E,	we	can	substitute	the	values	for	x	and	E	to	obtain	the	95%	confidence	interval	for	the	population	mean	µ:	Step	4:	Calculate	the	confidence	interval	for	the	mean	61	−	5.01	≤	µ	≤	61	+	5.01	55.99	≤	µ	≤	66.01	I	can	be	95%	confident	that	my	population	mean	µ	run	time	should	be
between	56	and	66	minutes.	Jumps	10266422224107826111	7961454310172045105	6869791311345840213	On	Thursday	08	November	2007	a	jump	rope	contest	was	held	at	a	local	elementary	school	festival.	Contestants	jumped	with	their	feet	together,	a	double-foot	jump.	The	data	seen	in	the	table	is	the	number	of	jumps	for	twenty-seven	female
jumpers.	Calculate	a	95%	confidence	interval	for	the	population	mean	number	of	jumps.	The	sample	mean	x	for	the	data	is	56.22	with	a	sample	standard	deviation	of	44.65.	The	sample	size	n	is	27.	You	should	try	to	make	these	calculations	yourself.	With	those	three	numbers	we	can	proceed	to	calculate	the	95%	confidence	interval	for	the	population
mean	µ:	Step	1:	Determine	the	basic	sample	statistics	sample	size	n	=	27	sample	mean	x	=	56.22	sample	standard	deviation	sx	=	44.65	Step	2:	Calculate	degrees	of	freedom,	tc,	standard	error	SE	The	degrees	of	freedom	are	n	−	1	=	26	Therefore	tcritical	=	TINV(1-0.95,27-1)	=	2.0555	The	Standard	Error	of	the	mean	SE	=	sx/√27	=	8.5924	Step	3:
Determine	margin	of	error	E	Therefore	the	Margin	of	error	for	the	mean	E	tc*	SE	=	2.0555*8.5924	=	17.66	The	95%	confidence	interval	for	the	mean	is	x	−	E	≤	µ	≤	x	+	E	Step	4:	Calculate	the	confidence	interval	for	the	mean	56.22	−	17.66	≤	µ	≤	56.22	+	17.66	38.56	≤	µ	≤	73.88	The	population	mean	for	the	jump	rope	jumpers	is	estimated	to	be
between	38.56	and	73.88	jumps.	9.3	Confidence	intervals	for	a	proportion	In	2003	a	staffer	at	the	Marshall	Islands	department	of	education	noted	in	a	newspaper	article	that	Marshall's	Island	public	school	system	was	not	the	weakest	in	Micronesia.	The	staffer	noted	that	Marshall's	was	second	weakest,	commenting	that	education	metrics	in	the
Marshall's	outperform	those	in	Chuuk's	public	schools.	In	2004	fifty	students	at	Marshall	Islands	High	School	took	the	entrance	test.	Ten	students	Achieved	admission	to	regular	college	programs.	In	Chuuk	state	7%	of	the	public	high	school	students	gain	admission	to	the	regular	college	programs.	If	the	95%	confidence	interval	for	the	Marshall
Islands	proportion	includes	7%,	then	the	Marshallese	students	are	not	academically	more	capable	than	the	Chuukese	students,	not	statistically	significantly	so.	If	the	95%	confidence	interval	does	not	include	7%,	then	the	Marshallese	students	are	statistically	significantly	stronger	in	their	admissions	rate.	Finding	the	95%	confidence	interval	for	a
proportion	involves	estimating	the	population	proportion	p.	The	fifty	students	at	Marshall	Islands	High	School	are	taken	as	a	sample.	The	proportion	who	gained	admission,	10/50	or	20%,	is	the	sample	proportion.	The	population	proportion	is	treated	as	unknown,	and	the	sample	proportion	is	used	as	the	point	estimate	for	the	population	proportion.
Note:	In	this	text	the	letter	p	is	used	for	the	sample	proportion	of	successes	instead	of	"p	hat".	A	capital	P	is	used	to	refer	to	the	population	proportion.	The	letter	n	refers	to	the	sample	size.	The	letter	p	is	the	sample	proportion	of	successes.	The	letter	q	is	the	sample	proportion	of	failures.	In	the	above	example	n	is	50,	p	is	10/50	or	0.20,	and	q	is	40/50
or	0.80	Estimating	the	population	proportion	P	can	only	be	done	if	the	following	conditions	are	met:	np	>	5	nq	>	5	In	the	example	np	=	(50)(0.20)	=	10	which	is	>	5.	nq	=	(50)(0.80)	=	40	which	is	also	>	5	The	standard	error	of	a	proportion	is:	SE=	(	pq	n	)	For	the	example	above	the	standard	error	is:	=sqrt(0.2*0.8/50)	For	the	calculation	of	the
confidence	interval	of	a	proportion,	only	the	standard	error	calculation	is	new.	The	rest	of	the	steps	are	the	same	as	in	the	preceding	section.	The	standard	error	for	the	proportion	is	0.0566.	The	margin	of	error	E	is	then	calculated	in	much	the	same	way	as	in	the	section	above,	by	multiplying	tc	by	the	standard	error.	tc	is	still	found	from	the	TINV
function.	The	degrees	of	freedom	will	remain	n-1.	The	margin	of	error	E	is:	E=	t	c	(	pq	n	)	=TINV(1-0.95,50-1)*sqrt((0.2)*(0.8)/50)	The	margin	of	error	E	is	0.1137	The	confidence	interval	for	the	population	proportion	P	is:	p	−	E	≤	P	≤	p	+	E	0.8	−	0.1137	≤	P	≤	0.8	+	0.1137	0.20	−	0.1137	≤	P	≤	0.20	+	0.1137	0.0863	≤	P	≤	0.3137	The	result	is	that	the
expected	population	mean	for	Marshall	Island	High	School	is	between	8.6%	and	31.2%.	The	95%	confidence	interval	does	not	include	the	7%	rate	of	the	Chuuk	public	high	schools.	While	the	college	entrance	test	is	not	a	measure	of	overall	academic	capability,	there	are	few	common	measures	that	can	be	used	across	the	two	nations.	The	result	does
not	contradict	the	staffer's	assertion	that	MIHS	outperformed	the	Chuuk	public	high	schools.	This	lack	of	contradiction	acts	as	support	for	the	original	statement	that	MIHS	outperformed	the	public	high	schools	of	Chuuk	in	2004.	Homework:	In	twelve	sumo	matches	Hakuho	bested	Tochiazuma	seven	times.	What	is	the	90%	confidence	interval	for	the
population	proportion	of	wins	by	Hakuho	over	Tochiazuma.	Does	the	interval	extend	below	50%?	A	commentator	noted	that	Tochiazuma	is	not	evenly	matched.	If	the	interval	includes	50%,	however,	then	we	cannot	rule	out	the	possibility	that	the	two-win	margin	is	random	and	that	the	rikishi	(wrestlers)	are	indeed	evenly	matched.	Hakuho	won	that
night,	upping	the	ratio	to	8	wins	to	5	losses	to	Tochiazuma.	Is	Hakuho	now	statistically	more	likely	to	win	or	could	they	still	be	evenly	matched	at	a	confidence	level	of	90%?	9.4	Deciding	on	a	sample	size	Suppose	you	are	designing	a	study	and	you	have	in	mind	a	particular	error	E	you	do	not	want	to	exceed.	You	can	determine	the	sample	size	n	you'll
need	if	you	have	prior	knowledge	of	the	standard	deviation	sx.	How	would	you	know	the	sample	standard	deviation	in	advance	of	the	study?	One	way	is	to	do	a	small	"pre-study"	to	obtain	an	estimate	of	the	standard	deviation.	These	are	often	called	"pilot	studies."	If	we	have	an	estimate	of	the	standard	deviation,	then	we	can	estimate	the	sample	size
needed	to	obtain	the	desired	error	E.	Since	E	=	tc*sx/√n,	then	solving	for	n	yields	=	(tc*sx/E)²	Note	that	this	is	not	a	proper	mathematical	solution	because	tc	is	also	dependent	on	n.	While	many	texts	use	zc	from	the	normal	distribution	in	the	formula,	we	have	not	learned	to	calculate	zc.	In	the	"real	world"	what	often	happens	is	that	a	result	is	found	to
not	be	statistically	significant	as	the	result	of	an	initial	study.	Statistical	significance	will	be	covered	in	more	detail	later.	The	researchers	may	have	gotten	"close"	to	statistical	significance	and	wish	to	shrink	the	confidence	interval	by	increasing	the	sample	size.	A	larger	sample	size	means	a	smaller	standard	error	(n	is	in	the	denominator!)	and	this	in
turn	yields	a	smaller	margin	of	error	E.	The	question	is	how	big	a	sample	would	be	needed	to	get	a	particular	margin	of	error	E.	The	value	for	tc	from	pilot	study	can	be	used	to	estimate	the	new	sample	size	n.	The	resulting	sample	size	n	will	be	slightly	overestimated	versus	the	traditional	calculation	made	with	the	normal	distribution.	This
overestimate,	while	slightly	unorthodox,	provides	some	assurance	that	the	error	E	will	indeed	shrink	as	much	as	needed.	In	a	study	of	body	fat	for	51	males	students	a	sample	mean	x	of	19.9	with	a	standard	deviation	of	7.7	was	measured.	This	led	to	a	margin	of	error	E	of	2.17	and	a	confidence	interval	17.73	≤	µ	≤	22.07	Suppose	we	want	a	margin	of
error	E	=	1.0	at	a	confidence	level	of	0.95	in	this	study	of	male	student	body	fat.	We	can	use	the	sx	from	the	sample	of	51	students	to	estimate	my	necessary	sample	size:	n	=	(2.0086*7.7/1)2	=	239.19	or	239	students.	Thus	I	estimate	that	I	will	need	239	male	students	to	reduce	my	margin	of	error	E	to	±1	in	my	body	fat	study.	Other	texts	which	use	zc
would	obtain	the	result	of	227.77	or	228	students.	The	eleven	additional	students	would	provide	assurance	that	the	margin	of	error	E	does	fall	to	1.0.	That	one	can	calculate	a	sample	size	n	necessary	to	reduce	a	margin	of	error	E	to	a	particular	level	means	that	for	any	hypothesis	test	(chapter	ten)	in	which	the	means	have	a	mathematical	difference,
statistical	significance	can	be	eventually	be	attained	by	sufficiently	increasing	the	sample	size.	This	may	sound	appealing	to	the	researcher	trying	to	prove	a	difference	exists,	but	philosophically	it	leaves	open	the	concept	that	all	things	can	be	proven	true	for	sufficiently	large	samples.	In	this	chapter	we	explore	whether	a	sample	has	a	sample	mean	x
that	could	have	come	from	a	population	with	a	known	population	mean	μ.	There	are	two	possibilities.	In	Case	I	below,	the	sample	mean	x	comes	from	the	population	with	a	known	mean	μ.	In	Case	II,	on	the	right,	the	sample	mean	x	does	not	come	from	the	population	with	a	known	mean	μ.	For	our	purposes	the	population	mean	μ	could	be	a	pre-
existing	mean,	an	expected	mean,	or	a	mean	against	which	we	intend	to	run	the	hypothesis	test.	In	the	next	chapter	we	will	consider	how	to	handle	comparing	two	samples	to	each	other	to	see	if	they	come	from	the	same	population.	Case	I	the	sample	comes	from	the	population	Population	population	mean	µ	Sample1	sample	size	n1	sample	mean	x1



sample	stdev	sx1	Case	II	the	sample	does	not	come	from	the	population	Population	population	mean	µ	Sample1	sample	size	n1	sample	mean	x1	sample	stdev	sx1	In	case	I	a	sample	taken	from	the	population	is	likely	to	produce	the	sample	mean	seen	for	that	particular	sample.	In	case	II	a	sample	taken	from	the	population	is	unlikely	to	produce	the
sample	mean	seen	for	that	particular	sample.	Put	another	way,	in	case	II	the	sample	is	not	likely	to	have	come	from	the	population	based	on	a	significant	difference	between	the	sample	mean	and	the	population	mean.	Suppose	we	want	to	do	a	study	of	whether	the	female	students	at	the	national	campus	gain	body	fat	with	age	during	their	years	at
COM-FSM.	Suppose	we	already	know	that	the	population	mean	body	fat	percentage	for	the	new	freshmen	females	18	and	19	years	old	is	μ	=	25.4.	We	measure	a	sample	size	n	=	12	female	students	at	the	national	campus	who	are	21	years	old	and	older	and	determine	that	their	sample	mean	body	fat	percentage	is	x	=	30.5	percent	with	a	sample
standard	deviation	of	sx	=	8.7.	Can	we	conclude	that	the	female	students	at	the	national	campus	gain	body	fat	as	they	age	during	their	years	at	the	College?	Not	necessarily.	Samples	taken	from	a	population	with	a	population	mean	of	μ	=	25.4	will	not	necessarily	have	a	sample	mean	of	25.4.	If	we	take	many	different	samples	from	the	population,	the
sample	means	will	distribute	normally	about	the	population	mean,	but	each	individual	mean	is	likely	to	be	different	than	the	population	mean.	In	other	words,	we	have	to	consider	what	the	likelihood	of	drawing	a	sample	that	is	30.5	-	25.4	=	5.1	units	away	from	the	population	mean	for	a	sample	size	of	12.	If	we	knew	more	about	the	population
distribution	we	would	be	able	to	determine	the	likelihood	of	a	12	element	sample	being	drawn	from	the	population	with	a	sample	mean	5.1	units	away	from	the	actual	population	mean.	In	this	case	we	know	more	about	our	sample	and	the	distribution	of	the	sample	mean.	The	distribution	of	the	sample	mean	follows	the	student's	t-distribution.	So	we
shift	from	centering	the	distribution	on	the	population	mean	and	center	the	distribution	on	the	sample	mean.	Then	we	determine	whether	the	confidence	interval	includes	the	population	mean	or	not.	We	construct	a	confidence	interval	for	the	range	of	the	population	mean	for	the	sample.	If	this	confidence	interval	includes	the	known	population	mean
for	the	18	to	19	years	olds,	then	we	cannot	rule	out	the	possibility	that	our	12	student	sample	is	from	that	same	population.	In	this	instance	we	cannot	conclude	that	the	women	gain	body	fat.	If	the	confidence	interval	does	NOT	include	the	known	population	mean	for	the	18	to	19	year	old	students	then	we	can	say	that	the	older	students	come	from	a
different	population:	a	population	with	a	higher	population	mean	body	fat.	In	this	instance	we	can	conclude	that	the	older	women	have	a	different	and	probably	higher	body	fat	level.	One	of	the	decisions	we	obviously	have	to	make	is	the	level	of	confidence	we	will	use	in	the	problem.	Here	we	enter	a	contentious	area.	The	level	of	confidence	we
choose,	our	level	of	bravery	or	temerity,	will	determine	whether	or	not	we	conclude	that	the	older	females	have	a	different	body	fat	content.	For	a	detailed	if	somewhat	advanced	discussion	of	this	issue	see	The	Fallacy	of	the	Null-Hypothesis	Significance	Test	by	William	Rozeboom.	In	education	and	the	social	sciences	there	is	a	tradition	of	using	a	95%
confidence	interval.	In	some	fields	three	different	confidence	intervals	are	reported,	typically	a	90%,	95%,	and	99%	confidence	interval.	Why	not	use	a	100%	confidence	interval?	The	normal	and	t-distributions	are	asymptotic	to	the	x-axis.	A	100%	confidence	interval	would	run	to	plus	and	minus	infinity.	We	can	never	be	100%	confident.	In	the	above
example	a	95%	confidence	interval	would	be	calculated	in	the	following	way:	n	=	12	x	=	30.53	sx	=	8.67	c	=	0.95	degrees	of	freedom	=	12	-1	=	11	tc	=	tinv((1-0.95,11)	=	2.20	x	-	tc*8.67/√12	<	μ	<	x	+	tc*8.67/√12	25.02	<	μ	<	36.04	The	95%	confidence	interval	for	our	n	=	12	sample	includes	the	population	mean	25.3.	We	CANNOT	conclude	at	the
95%	confidence	level	that	this	sample	DID	NOT	come	from	a	population	with	a	population	mean	μ	of	25.3.	Another	way	of	thinking	of	this	is	to	say	that	30.5	is	not	sufficiently	separated	from	25.8	for	the	difference	to	be	statistically	significant	at	a	confidence	level	of	95%	in	the	above	example.	In	common	language,	the	women	are	not	gaining	body	fat.
The	above	process	is	reduced	to	a	formulaic	structure	in	hypothesis	testing.	Hypothesis	testing	is	the	process	of	determining	whether	a	confidence	interval	includes	a	previously	known	population	mean	value.	If	the	population	mean	value	is	included,	then	we	do	not	have	a	statistically	significant	result.	If	the	mean	is	not	encompassed	by	the
confidence	interval,	then	we	have	a	statistically	significant	result	to	report.	Homework	If	I	expand	my	study	of	female	students	21+	to	n	=	24	and	find	a	sample	mean	x	=	28.7	and	an	sx=7,	is	the	new	sample	mean	statistically	significantly	different	from	a	population	mean	μ	of	25.4	at	a	confidence	level	of	c	=	0.90?	10.2	Hypothesis	Testing	In	this
section	the	language	of	hypothesis	testing	is	introduced.	A	new	statistic,	the	"t-statistic"	is	also	introduced.	In	this	text	the	choice	is	made	to	use	two-tailed	hypothesis	tests.	This	retains	the	result	found	with	a	confidence	interval	hypothesis	test	found	in	the	previous	section.	This	also	means	that	1	-	c	=	α	and	1	-	α	=	c.	In	hypothesis	testing	one	sets	up
a	binary	choice	between	a	hypothesis	of	no	change	and	a	hypothesis	that	there	is	a	change.	The	null	hypothesis	H0	The	null	hypothesis	is	the	supposition	that	there	is	no	change	in	a	value	from	some	pre-existing,	historical,	or	expected	value.	The	null	hypothesis	literally	supposes	that	the	change	is	null,	non-existent,	that	there	is	no	change.	In	the
previous	example	the	null	hypothesis	would	have	been	H0:	μ	=	25.4	The	way	to	read	that	is	to	understand	the	μ	as	meaning	"the	sample	could	have	a	population	mean	of	25.4".	This	does	not	mean	that	the	population	mean	IS	25.4,	only	that	the	sample	could	come	from	a	population	with	a	population	mean	of	25.4.	The	alternate	hypothesis	H1	The
alternate	hypothesis	is	the	supposition	that	there	is	a	change	in	the	value	from	some	pre-existing,	historical,	or	expected	value.	Note	that	the	alternate	hypothesis	does	NOT	say	the	"new"	value	is	the	correct	value,	just	that	whatever	the	mean	μ	might	be,	it	is	not	that	given	by	the	null	hypothesis.	H1:	μ	≠	25.4	Statistical	hypothesis	testing	We	run
hypothesis	test	to	determine	if	new	data	confirms	or	rejects	the	null	hypothesis.	If	the	new	data	falls	within	the	confidence	interval,	then	the	new	data	does	not	contradict	the	null	hypothesis.	In	this	instance	we	say	that	"we	fail	to	reject	the	null	hypothesis."	Note	that	we	do	not	actually	affirm	the	null	hypothesis.	This	is	really	little	more	than	semantic
shenanigans	that	statisticians	use	to	protect	their	derrieres.	Although	we	run	around	saying	we	failed	to	reject	the	null	hypothesis,	in	practice	it	means	we	left	the	null	hypothesis	standing:	we	de	facto	accepted	the	null	hypothesis.	If	the	new	data	falls	outside	the	confidence	interval,	then	the	new	data	would	cause	us	to	reject	the	null	hypothesis.	In
this	instance	we	say	"we	reject	the	null	hypothesis."	Note	that	we	never	say	that	we	accept	the	alternate	hypothesis.	Accepting	the	alternate	hypothesis	would	be	asserting	that	the	population	mean	is	the	sample	mean	value.	The	test	does	not	prove	this,	it	only	shows	that	the	sample	could	not	have	the	population	mean	given	in	the	null	hypothesis.	For
two-tailed	tests,	the	results	are	identical	to	a	confidence	interval	test.	Note	that	confidence	interval	never	asserts	the	exact	population	mean,	only	the	range	of	possible	means.	Hypothesis	testing	theory	is	built	on	confidence	interval	theory.	The	confidence	interval	does	not	prove	a	particular	value	for	the	population	mean	,	so	neither	can	hypothesis
testing.	In	our	example	above	we	failed	to	reject	the	null	hypothesis	H0	that	the	population	mean	for	the	older	students	was	25.4,	the	same	population	mean	as	the	younger	students.	In	the	example	above	a	95%	confidence	interval	was	used.	At	this	point	in	your	statistical	development	and	this	course	you	can	think	of	this	as	a	5%	chance	we	have
reached	the	wrong	conclusion.	Imagine	that	the	18	to	19	year	old	students	had	a	body	fat	percentage	of	24	in	the	previous	example.	We	would	have	rejected	the	null	hypothesis	and	said	that	the	older	students	have	a	different	and	probably	larger	body	fat	percentage.	There	is,	however,	a	small	probability	(less	than	5%)	that	a	12	element	sample	with	a
mean	of	30.5	and	a	standard	deviation	of	8.7	could	come	from	a	population	with	a	population	mean	of	24.	This	risk	of	rejecting	the	null	hypothesis	when	we	should	not	reject	it	is	called	alpha	α.	Alpha	is	1-confidence	level,	or	α	=	1-c.	In	hypothesis	testing	we	use	α	instead	of	the	confidence	level	c.	Suppose	And	we	fail	to	reject	H0	Reject	H0	as	false	H0
is	true	Correct	decision.	Probability:	1	−	α	Type	I	error.	Probability:	α	H0	is	false	Type	II	error.	Probability:	β	Correct	decision.	Probability:	1	−	β	Hypothesis	testing	seeks	to	control	alpha	α.	We	cannot	determine	β	(beta)	with	the	statistical	tools	you	learn	in	this	course.	Alpha	α	is	called	the	level	of	significance.	1	−	β	is	called	the	"power"	of	the	test.
The	regions	beyond	the	confidence	interval	are	called	the	"tails"	or	critical	regions	of	the	test.	In	the	above	example	there	are	two	tails	each	with	an	area	of	0.025.	Alpha	α	=	0.05	A	type	I	error,	the	risk	of	which	is	characterized	by	alpha	α,	is	also	known	as	a	false	positive.	A	type	I	error	is	finding	that	a	change	has	happened,	finding	that	a	difference	is
significant,	when	it	is	not.	A	type	II	error,	the	risk	of	which	is	characterized	by	beta	β,	is	also	known	as	a	false	negative.	A	type	II	error	is	the	failure	to	find	that	a	change	has	happened,	finding	that	a	difference	is	not	significant,	when	it	is.	If	you	increase	the	confidence	level	c,	then	alpha	decreases	and	beta	increases.	High	levels	of	confidence	in	a
result,	small	alpha	values,	small	risks	of	a	type	I	error,	leader	to	higher	risks	of	committing	a	type	II	error.	Thus	in	hypothesis	testing	there	is	a	tendency	to	utilize	an	alpha	of	0.05	or	0.01	as	a	way	to	controlling	the	risk	of	committing	a	type	II	error.	Another	take	on	type	I	and	type	II	errors:	Source	information:	Jim	Thornton	via	Flowing	Data	For
hypothesis	testing	it	is	simply	safest	to	always	use	the	t-distribution.	In	the	example	further	below	we	will	run	a	two-tail	test.	Steps	Write	down	H0,	the	null	hypothesis	Write	down	H1,	the	alternate	hypothesis	If	not	given,	decide	on	a	level	of	risk	of	rejecting	a	true	null	hypothesis	H0	by	choosing	an	α.	Determine	the	t-critical	values	from	TINV(α,df).
Determine	the	t-statistic	from:	t=	(	x‾	−μ	)	(	sx	n	)	Make	a	sketch	If	the	t-statistic	is	"beyond"	the	t-critical	values	then	reject	the	null	hypothesis.	By	"beyond"	we	mean	larger	in	absolute	value.	Otherwise	we	fail	to	reject	the	null	hypothesis.	Put	another	way,	if	the	absolute	value	of	the	t-statistic	is	larger	than	t-critical,	then	the	result	is	statistically
significant	and	we	reject	the	null	hypothesis.	If	|t|	>	tc	then	reject	the	null	hypothesis	If	|t|	<	tc	then	fail	to	reject	the	null	hypothesis	Calculating	the	t-statistic	in	a	spreadsheet:	=(AVERAGE(data)-μ)/(STDEV(data)/SQRT(n))	where	μ	is	the	expected	population	mean.	Using	the	data	from	the	first	section	of	these	notes:	H0:	μ	=	25.4	H1:	μ	≠	25.4	Alpha	α
=	0.05	(α	=	1	−	c,	c	=	0.95)	Determine	the	t-critical	values:	degrees	of	freedom:	n	−	1	=	12	−	1;	tc	=	TINV(α,df)	=	tinv(0.05,11)	=	2.20	Determine	the	t-statistic	t=	(	x‾	−μ	)	(	sx	n	)	=	(30.53-25.4)/(8.67/sqrt(12))	=	2.05	Make	a	sketch:	The	absolute	value	of	the	t-statistic	t	at	2.05	is	NOT	"beyond"	the	t-critical	value	of	2.20.	In	the	sketch	we	can	see	that
the	t-statistic	is	inside	of	the	"confidence	interval"	that	runs	from	-2.20	to	+2.20.	Note	that	here	the	confidence	interval	is	being	expressed	in	terms	of	values	from	the	student's	t-distribution.	We	FAIL	to	reject	the	null	hypothesis	H0.	We	cannot	say	the	older	female	students	came	from	a	different	population	than	the	younger	students	with	an
population	mean	of	25.4.	Why	not	now	accept	H0:	μ	=	25.4	as	the	population	mean	for	the	21	year	old	female	students	and	older?	We	risk	making	a	Type	II	error:	failing	to	reject	a	false	null	hypothesis.	We	are	not	trying	to	prove	H0	as	being	correct,	we	are	only	in	the	business	of	trying	to	"knock	it	down."	More	simply,	the	t-statistic	is	NOT	bigger	in
absolute	value	than	t-critical.	Note	the	changes	in	the	above	sketch	from	the	confidence	interval	work.	Now	the	distribution	is	centered	on	μ	with	the	distribution	curve	described	by	a	t-distribution	with	eleven	degrees	of	freedom.	In	our	confidence	interval	work	we	centered	our	t-distribution	on	the	sample	mean.	The	result	is,	however,	the	same	due
to	the	symmetry	of	the	problems	and	the	curve.	If	our	distribution	were	not	symmetric	we	could	not	perform	this	sleight	of	hand.	The	hypothesis	test	process	reduces	decision	making	to	the	question,	"Is	the	t-statistic	t	greater	than	the	t-critical	value	tc?	If	t	>	tc,	then	we	reject	the	null	hypothesis.	If	t	<	tc,	then	we	fail	to	reject	the	null	hypothesis.
Note	that	t	and	tc	are	irrational	numbers	and	thus	unlikely	to	ever	be	exactly	equal.	Decision	making	using	the	t-statistic	When	the	absolute	value	of	the	t-statistic	is	less	than	t-critical:	Fail	to	reject	the	null	hypothesis	No,	the	sample	mean	is	NOT	significantly	different	from	the	population	mean	Yes,	the	sample	could	have	come	from	a	population	with
the	given	population	mean	When	the	absolute	value	of	the	t-statistic	is	more	than	t-critical:	Reject	the	null	hypothesis	Yes,	the	sample	mean	is	significantly	different	from	the	population	mean	No,	the	sample	could	NOT	have	come	from	a	population	with	the	given	population	mean	A	population	of	marbles	has	a	population	mean	mass	μ	of	5.20	grams.	A
sample	of	five	marbles	was	randomly	selected	from	the	population:	5.2,	4.9,	5.2,	5.7,	and	5.9	grams.	The	sample	mean	x	is	5.380	grams	with	a	sample	standard	deviation	of	0.409.	At	an	alpha	α	=	0.05,	could	this	sample	of	marbles	have	a	population	mean	of	5.20	grams?	A	spreadsheet	with	data	and	a	video	for	this	example	were	posted	online	in	2020.
H0:	μ	=	5.20	H1:	μ	≠	5.20	Pay	close	attention	to	the	above!	We	DO	NOT	write	H1:	μ	=	5.380.	This	is	perhaps	a	common	beginning	mistake.	The	null	hypothesis	is	whether	the	population	mean	for	the	five	run	sample	could	be	5.20.	H0:	μ	=	5.20	H1:	μ	≠	5.20	Alpha	α	=	0.05	(α	=	1	−	c,	c	=	0.95)	for	a	two-tailed	hypothesis	test.	Determine	the	t-critical
values:	degrees	of	freedom:	n	−	1	=	5	−	1;	tc	=	TINV(α,df)	=	tinv(0.05,4)	=	2.78	Determine	the	t-statistic	t=	(	x‾	−μ	)	(	sx	n	)	=	(5.380-5.20)/(0.409/sqrt(5))	=	0.98	Note	that	in	the	above	formula	sx/√n	is	used	in	the	denominator.	This	is	the	same	as	the	standard	error	of	the	mean,	thus	an	equivalent	calculation	is	to	use	the	standard	error	of	the	mean
SE	in	the	denominator:	(5.38-5.20)/0.183	=	0.98.	Make	a	sketch:	The	absolute	values	of	the	t-statistic	t	of	0.98	is	NOT	"beyond"	the	t-critical	value	of	2.78.	We	FAIL	to	reject	the	null	hypothesis	H0.	Note	that	in	my	sketch	I	am	centering	my	distribution	on	the	population	mean	and	looking	at	the	distribution	of	sample	means	for	sample	sizes	of	5	based
on	that	population	mean.	Then	I	look	at	where	my	actual	sample	mean	falls	with	respect	to	that	distribution.	Note	too	that	my	t-statistic	t	does	not	fall	"beyond"	the	critical	values.	I	do	not	have	enough	separation	from	my	population	mean:	I	cannot	reject	H0.	So	I	fail	to	reject	H0.	The	five	marbles	could	have	come	from	the	population.	10.3	P-value	The
p-value	is	a	calculation	of	the	area	"beyond"	the	t-statistic.	For	two-tailed	tests	the	area	beyond	the	positive	t-statistic	and	the	area	below	the	negative	value	of	the	t-statistic	is	considered.	Shaded	area	=	0.620.	Unshaded	area	=	p-value	=	0.380.	Link	For	the	example	in	10.2.2	the	unshaded	area	under	the	curve	and	above	the	x-axis	in	the	diagram	is
the	p-value.	If	this	unshaded	area	drops	below	alpha,	which	for	us	is	0.05,	then	we	reject	the	null	hypothesis.	Thus	the	p-value	is	a	third	way	to	determine	significance.	Some	functions	that	we	will	meet	in	the	next	chapter	return	only	the	p-value.	And	many	studies	often	only	cite	p-values.	To	some	extent,	the	p-value	has	been	abused,	and	a	definition	of
what	exactly	the	p-value	means	is	hard	to	put	into	words.	Not	even	scientists	can	easily	explain	p-values.	In	this	text	the	p-value	is	treated	as	only	informing	one	whether	a	result	is	"surprising"	or	not.	In	this	text	"surprising"	is	any	p-value	less	than	0.05.	If	a	result	is	surprising	that	means	that	the	distance	of	the	sample	mean	from	the	proposed
population	mean	is	surprisingly	large,	as	in	large	enough	to	be	statistically	significant.	Surprising	means	we	reject	the	null	hypothesis.	If	the	p-value	is	larger	than	0.05,	the	result	is	not	surprising	and	we	fail	to	reject	the	null	hypothesis.	The	p-value	is	calculated	using	the	formula:	=TDIST(ABS(t),degrees	of	freedom,number	of	tails)	For	a	single
variable	sample	and	a	two-tailed	distribution,	the	spreadsheet	equation	becomes:	=TDIST(ABS(t),n−1,2)	The	degrees	of	freedom	are	n	−	1	for	comparison	of	a	sample	mean	to	a	known	or	pre-existing	population	mean	μ.	Note	that	TDIST	can	only	handle	positive	values	for	the	t-statistic,	hence	the	absolute	value	function.	If	you	already	have	a	positive
t-statistic,	the	ABS	function	can	be	omitted	from	the	formula.	Guidelines	for	decision	making	with	the	p-value	When	the	p-value	is	"not	surprising"	(larger	than	our	chosen	alpha):	Fail	to	reject	the	null	hypothesis	No,	the	sample	mean	is	NOT	significantly	different	from	the	population	mean	Yes,	the	sample	could	have	come	from	a	population	with	the
given	population	mean	When	the	p-value	is	"surprising"	(less	than	our	chosen	alpha):	Reject	the	null	hypothesis	Yes,	the	sample	mean	is	significantly	different	from	the	population	mean	No,	the	sample	could	NOT	have	come	from	a	population	with	the	given	population	mean	For	two-tailed	hypothesis	testing,	1	−	p-value	is	the	confidence	interval	for
which	the	new	value	does	not	include	the	pre-existing	population	mean.	Another	way	to	say	this	is	that	1	−	p-value	is	the	maximum	confidence	level	c	we	can	have	that	the	difference	(change)	is	significant.	We	usually	look	for	a	maximum	confidence	level	c	of	0.95	(95%)	or	higher.	Again,	the	confidence	level	does	not	indicate	the	probability	that	we
are	right	-	on	any	one	test	we	cannot	know	if	we	are	right.	This	means	that	the	p-value	is	not	the	probability	that	you	are	wrong.	Perhaps	best	to	think	of	the	p-value	as	how	surprised	one	should	be.	The	p-value	is	often	misunderstood	and	misinterpreted.	The	p-value	should	be	thought	of	as	a	measure	of	whether	one	should	be	surprised	by	a	result.	If
the	p-value	is	less	than	a	pre-chosen	alpha,	usually	0.05,	that	would	be	a	surprising	result.	If	the	p-value	is	greater	than	the	pre-chosen	alpha,	usually	0.05,	then	that	would	NOT	be	a	surprising	result.	The	p-value	is	also	a	much	abused	concept.	In	March	2016	the	American	Statistical	Association	issued	the	following	six	principles	which	which	address
misconceptions	and	misuse	of	the	p-	value,	are	the	following:	P-values	can	indicate	how	incompatible	the	data	are	with	a	specified	statistical	model.	P-values	do	not	measure	the	probability	that	the	studied	hypothesis	is	true,	or	the	probability	that	the	data	were	produced	by	random	chance	alone.	Scientific	conclusions	and	business	or	policy	decisions
should	not	be	based	only	on	whether	a	p-value	passes	a	specific	threshold.	Proper	inference	requires	full	reporting	and	transparency.	A	p-value,	or	statistical	significance,	does	not	measure	the	size	of	an	effect	or	the	importance	of	a	result.	By	itself,	a	p-value	does	not	provide	a	good	measure	of	evidence	regarding	a	model	or	hypothesis.	American
Statistical	Association	(ASA)	statement	on	statistical	significance	and	P-Values.	See	also	Statisticians	Found	One	Thing	They	Can	Agree	On:	It’s	Time	To	Stop	Misusing	P-Values	and	The	mismeasure	of	scientific	significance	The	full	AMA	manuscript	is	at	The	ASA's	statement	on	p-values:	context,	process,	and	purpose.	The	American	Statistical
Association	settled	on	the	following	informal	definition	of	the	P-value,	"Informally,	a	p-value	is	the	probability	under	a	specified	statistical	model	that	a	statistical	summary	of	the	data	(for	example,	the	sample	mean	difference	between	two	compared	groups)	would	be	equal	to	or	more	extreme	than	its	observed	value."	Returning	to	our	earlier	example
in	this	text	where	the	body	fat	percentage	of	12	female	students	21	years	old	and	older	was	x	=	30.53	with	a	standard	deviation	sx=8.67	was	tested	against	a	null	hypothesis	H0	that	the	population	mean	body	fat	for	18	to	19	year	old	students	was	μ	=	25.4.	We	failed	to	reject	the	null	hypothesis	at	an	alpha	of	0.05.	What	if	we	are	willing	to	take	a
larger	risk?	What	if	we	are	willing	to	risk	a	type	I	error	rate	of	10%?	This	would	be	an	alpha	of	0.10.	H0:	μ	=	25.4	H1:	μ	25.4	Alpha	α	=	0.10	(α	=	1	-	c,	c	=	0.90)	Determine	the	t-critical	values:	degrees	of	freedom:	n	-	1	=	12	-	1;	tc	=	TINV(α,df)	=	tinv(0.10,11)	=	1.796	Determine	the	t-statistic:	t=	(	x‾	−μ	)	(	sx	n	)	=	(30.53-25.4)/(8.67/sqrt(12))	=	2.05
Make	a	sketch:	The	t-statistic	is	"beyond"	the	t-critical	value.	We	reject	the	null	hypothesis	H0.	We	can	say	the	older	female	students	came	from	a	different	population	than	the	younger	students	with	an	population	mean	of	25.4.	Why	not	now	accept	an	H1:	μ	=	30.53	as	the	population	mean	for	the	21	year	old	female	students	and	older?	We	do	not
actually	know	the	population	mean	for	the	21+	year	old	female	students	unless	we	measure	ALL	of	the	21+	year	old	students.	We	can	only	say	what	the	value	is	not:	it	is	not	25.4.	We	cannot	say	what	the	value	is.	This	is	why	we	"reject	the	null	hypotheis"	instead	of	"accepting	the	alternate	hypothesis."	With	an	alpha	of	0.10	(a	confidence	interval	of
0.90)	our	results	are	statistically	significant.	These	same	results	were	NOT	statistically	significant	at	an	alpha	α	of	0.05.	So	which	is	correct:	We	FAIL	to	reject	H0	because	the	t-statistic	based	on	x	=	30.53,	μ=25.4,	sx	=	8.76,	is	NOT	beyond	the	critical	value	for	alpha	α=0.05	OR	We	reject	H0	because	the	t-statistic	based	on	x	=	30.53,	μ=25.4,	sx	=
8.76,	is	beyond	the	critical	value	for	alpha	α	=	0.10.	Note	how	we	would	have	said	this	in	confidence	interval	language:	We	FAIL	to	reject	H0	because	μ=25.4	is	within	the	95%	confidence	interval	for	x	=	30.53,	sx=8.76	OR	We	reject	H0	because	μ=25.4	is	NOT	within	the	90%	confidence	interval	for	x=30.53,	sx=8.76.	The	answer	is	that	it	depends	on
how	much	risk	you	are	willing	take,	a	5%	chance	of	committing	a	Type	I	error	(rejecting	a	null	hypothesis	that	is	true)	or	a	larger	10%	chance	of	committing	a	Type	I	error.	The	result	depends	on	your	own	personal	level	of	adversity	to	risk.	That	is	a	heck	of	a	mathematical	mess:	the	answer	depends	on	your	personal	willingness	to	take	a	particular
risk.	Consider	what	happens	if	someone	decides	they	only	want	to	be	wrong	1	in	15	times:	that	corresponds	to	an	alpha	of	α	=	0.067.	They	cannot	use	either	of	the	above	examples	to	decide	whether	to	reject	the	null	hypothesis.	We	need	a	way	to	indicate	the	boundary	at	which	alpha	changes	from	failure	to	reject	the	null	hypothesis	to	rejection	of	the
null	hypothesis.	Citing	the	p-value	gives	us	a	way	to	provide	that	option.	The	p-value	is	also	the	smallest	alpha	for	which	we	would	still	reject	the	null	hypothesis.	Suppose	one	is	using	alpha	=	0.05.	Then	any	p-value	less	than	0.05	leads	to	rejecting	the	null	hypothesis.	Suppose	one	chooses	to	use	alpha	=	0.10.	Then	any	p-value	less	than	this	value
leads	to	rejection.	If	the	p-value	is	0.08,	then	someone	using	an	alpha	of	0.05	does	NOT	reject	the	null	while	someone	using	0.10	fails	to	reject	the	null	hypothesis.	For	a	p-value	=	0.08	any	alpha	down	to	0.08	leads	to	rejection	of	the	null	hypothesis	while	any	alpha	smaller	than	0.08	leads	to	failure	to	reject	the	null	hypothesis.	This	sounds	confusing
and	this	can	be	confusing.	The	key	point	is	that	one	has	to	choose	one's	alpha,	one's	willingness	to	risk	a	type	I	false	positive	error,	before	making	any	calculations.	Another	solution	to	this	is	to	keep	the	same	alpha	that	is	consistently	used	in	a	particular	field	of	study,	often	0.05.	With	alpha	at	0.05,	then	any	p-value	less	than	0.05	is	significant	and
leads	to	rejection	of	the	null	hypothesis.	For	this	body	fat	example	the	p-value	=	TDIST(ABS(2.05,11,2)	=	0.06501	The	p-value	represents	the	SMALLEST	alpha	α	for	which	the	test	is	deemed	"statistically	significant"	or,	perhaps,	"worthy	of	note."	The	p-value	is	the	SMALLEST	alpha	α	for	which	we	reject	the	null	hypothesis.	Thus	for	all	alpha	greater
than	0.065	we	reject	the	null	hypothesis.	The	"one	in	fifteen"	person	would	reject	the	null	hypothesis	(0.0667	>	0.065).	The	alpha	=	0.05	person	would	not	reject	the	null	hypothesis.	If	the	pre-chosen	alpha	is	more	than	the	p-value,	then	we	reject	the	null	hypothesis.	If	the	pre-chosen	alpha	is	less	than	the	p-value,	then	we	fail	to	reject	the	null
hypothesis.	The	p-value	lets	each	person	decide	on	their	own	level	of	risk	and	removes	the	arbitrariness	of	personal	risk	choices.	This	is	also	why	alpha	should	be	chosen	before	data	is	collected	and	analyzed.	There	is	a	risk	of	the	statistical	results	influencing	a	decision	on	alpha	if	the	choice	is	made	after	the	analysis.	Because	many	studies	in
education	and	the	social	sciences	are	done	at	an	alpha	of	0.05,	a	p-value	at	or	below	0.05	is	used	to	reject	the	null	hypothesis.	10.4	One	Tailed	Tests	All	of	the	work	above	in	confidence	intervals	and	hypothesis	testing	has	been	with	two-tailed	confidence	intervals	and	two-tailed	hypothesis	tests.	There	are	statisticians	who	feel	one	should	never	leave
the	realm	of	two-tailed	intervals	and	tests.	Unfortunately,	the	practice	by	scientists,	business,	educators	and	many	of	the	fields	in	social	science,	is	to	use	one-tailed	tests	when	one	is	fairly	certain	that	the	sample	has	changed	in	a	particular	direction.	The	effect	of	moving	to	a	one	tailed	test	is	to	increase	one's	risk	of	committing	a	Type	I	error.	One
tailed	tests,	however,	are	popular	with	researchers	because	they	increase	the	probability	of	rejecting	the	null	hypothesis	(which	is	what	most	researchers	are	hoping	to	do).	The	complication	is	that	starting	with	a	one-tailed	test	presumes	a	change,	as	in	ANY	change	in	ANY	direction	has	occurred.	The	proper	way	to	use	a	one-tailed	test	is	to	first	do	a
two-tailed	test	for	change	in	any	direction.	If	change	has	occurred,	then	one	can	do	a	one-tailed	test	in	the	direction	of	the	change.	Returning	to	the	earlier	example	of	whether	I	am	running	slower,	suppose	I	decide	I	want	to	test	to	see	if	I	am	not	just	performing	differently	(≠),	but	am	actually	slower	(
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